Robustness of two air traffic scheduling approaches to departure uncertainty

Author(s):  
Adrian Agogino ◽  
Joseph Rios
2019 ◽  
Vol 20 (9) ◽  
pp. 3421-3434
Author(s):  
Yicheng Zhang ◽  
Rong Su ◽  
Gammana Guruge Nadeesha Sandamali ◽  
Yi Zhang ◽  
Christos G. Cassandras ◽  
...  

2020 ◽  
Vol 68 (5) ◽  
pp. 1375-1402 ◽  
Author(s):  
Kai Wang ◽  
Alexandre Jacquillat

Air traffic management measures comprise tactical operating procedures to minimize delay costs and strategic scheduling interventions to control overcapacity scheduling. Although interdependent, these problems have been treated in isolation. This paper proposes an integrated model of scheduling and operations in airport networks that jointly optimizes scheduling interventions and ground-holding operations across airports networks under operating uncertainty. It is formulated as a two-stage stochastic program with integer recourse. To solve it, we develop an original decomposition algorithm with provable solution quality guarantees. The algorithm relies on new optimality cuts—dual integer cuts—that leverage the reduced costs of the dual linear programming relaxation of the second-stage problem. The algorithm also incorporates neighborhood constraints, which shift from exploration to exploitation at later stages. We also use a scenario generation approach to construct representative scenarios from historical records of operations—using integer programming. Computational experiments show that our algorithm yields near-optimal solutions for the entire U.S. National Airspace System network. Ultimately, the proposed approach enhances airport demand management models through scale integration (by capturing network-wide interdependencies) and scope integration (by capturing interdependencies between scheduling and operations).


Author(s):  
Alexander V. Sadovsky ◽  
Damek Davis ◽  
Douglas R. Isaacson

A class of problems in air traffic management (ATM) asks for a scheduling algorithm that supplies the air traffic services authority not only with a schedule of arrivals and departures but also with speed advisories. Since advisories must be finite, a scheduling algorithm must ultimately produce a finite data set, hence must either start with a purely discrete model or involve a discretization of a continuous one. The former choice, often preferred for intuitive clarity, naturally leads to mixed-integer programs (MIPs), hindering proofs of correctness and computational cost bounds (crucial for real-time operations). In this paper, a hybrid control system is used to model air traffic scheduling, capturing both the discrete and continuous aspects. This framework is applied to a class of problems, called the fully routed nominal problem. We prove a number of geometric results on feasible schedules and use these results to formulate an algorithm that attempts to compute a collective speed advisory, effectively piecewise linear with finitely many vertices, and has computational cost polynomial in the number of aircraft. This work is a first step toward optimization and models refined with more realistic detail.


2015 ◽  
Vol 5 (1) ◽  
pp. 3-17 ◽  
Author(s):  
Michaela Schwarz ◽  
K. Wolfgang Kallus

Since 2010, air navigation service providers have been mandated to implement a positive and proactive safety culture based on shared beliefs, assumptions, and values regarding safety. This mandate raised the need to develop and validate a concept and tools to assess the level of safety culture in organizations. An initial set of 40 safety culture questions based on eight themes underwent psychometric validation. Principal component analysis was applied to data from 282 air traffic management staff, producing a five-factor model of informed culture, reporting and learning culture, just culture, and flexible culture, as well as management’s safety attitudes. This five-factor solution was validated across two different occupational groups and assessment dates (construct validity). Criterion validity was partly achieved by predicting safety-relevant behavior on the job through three out of five safety culture scores. Results indicated a nonlinear relationship with safety culture scales. Overall the proposed concept proved reliable and valid with respect to safety culture development, providing a robust foundation for managers, safety experts, and operational and safety researchers to measure and further improve the level of safety culture within the air traffic management context.


2019 ◽  
Vol 9 (1) ◽  
pp. 2-11
Author(s):  
Marina Efthymiou ◽  
Frank Fichert ◽  
Olaf Lantzsch

Abstract. The paper examines the workload perceived by air traffic control officers (ATCOs) and pilots during continuous descent operations (CDOs), applying closed- and open-path procedures. CDOs reduce fuel consumption and noise emissions. Therefore, they are supported by airports as well as airlines. However, their use often depends on pilots asking for CDOs and controllers giving approval and directions. An adapted NASA Total Load Index (TLX) was used to measure the workload perception of ATCOs and pilots when applying CDOs at selected European airports. The main finding is that ATCOs’ workload increased when giving both closed- and open-path CDOs, which may have a negative impact on their willingness to apply CDOs. The main problem reported by pilots was insufficient distance-to-go information provided by ATCOs. The workload change is important when considering the use of CDOs.


2018 ◽  
Vol 8 (2) ◽  
pp. 100-111 ◽  
Author(s):  
Maik Friedrich ◽  
Christoph Möhlenbrink

Abstract. Owing to the different approaches for remote tower operation, a standardized set of indicators is needed to evaluate the technical implementations at a task performance level. One of the most influential factors for air traffic control is weather. This article describes the influence of weather metrics on remote tower operations and how to validate them against each other. Weather metrics are essential to the evaluation of different remote controller working positions. Therefore, weather metrics were identified as part of a validation at the Erfurt-Weimar Airport. Air traffic control officers observed weather events at the tower control working position and the remote control working position. The eight participating air traffic control officers answered time-synchronized questionnaires at both workplaces. The questionnaires addressed operationally relevant weather events in the aerodrome. The validation experiment targeted the air traffic control officer’s ability to categorize and judge the same weather event at different workplaces. The results show the potential of standardized indicators for the evaluation of performance and the importance of weather metrics in relation to other evaluation metrics.


2013 ◽  
Vol 3 (1) ◽  
pp. 19-27 ◽  
Author(s):  
Yvonne Pecena ◽  
Doris Keye ◽  
Kristin Conzelmann ◽  
Dietrich Grasshoff ◽  
Peter Maschke ◽  
...  

The job of an air traffic controller (ATCO) is very specific and demanding. The assessment of potential suitable candidates requires a customized and efficient selection procedure. The German Aerospace Center DLR conducts a highly selective, multiple-stage selection procedure for ab initio ATCO applicants for the German Air Navigation Service Provider DFS. Successful applicants start their training with a training phase at the DFS Academy and then continue with a unit training phase in live traffic. ATCO validity studies are scarcely reported in the international scientific literature and have mainly been conducted in a military context with only small and male samples. This validation study encompasses the data from 430 DFS ATCO trainees, starting with candidate selection and extending to the completion of their training. Validity analyses involved the prediction of training success and several training performance criteria derived from initial training. The final training success rate of about 79% was highly satisfactory and higher than that of other countries. The findings demonstrated that all stages of the selection procedure showed predictive validity toward training performance. Among the best predictors were scores measuring attention and multitasking ability, and ratings on general motivation from the interview.


Sign in / Sign up

Export Citation Format

Share Document