PTSD monitoring by using brain computer interface for unmanned aerial vehicle operator safety

Author(s):  
Marwa El Diwiny ◽  
Abou Heshema El Sayed ◽  
El Sayed Hassanen ◽  
Gamal Abou El Magd
Electronics ◽  
2021 ◽  
Vol 10 (23) ◽  
pp. 3025
Author(s):  
Ming-An Chung ◽  
Chia-Wei Lin ◽  
Chih-Tsung Chang

The brain–computer interface (BCI) is a mechanism for extracting information from the brain, with this information used for various applications. This study proposes a method to control an unmanned aerial vehicle (UAV) flying through a BCI system using the steady-state visual evoked potential (SSVEP) approach. The UAV’s screen emits three frequencies for visual stimulation: 15, 23, and 31 Hz for the UAV’s left-turn, forward-flight, and right-turn functions. Due to the requirement of immediate response to the UAV flight, this paper proposes a method to improve the accuracy rate and reduce the time required to correct instruction errors in the resolution of brainwave signals received by UAVs. This study tested ten subjects and verified that the proposed method has a 10% improvement inaccuracy. While the traditional method can take 8 s to correct an error, the proposed method requires only 1 s, making it more suitable for practical applications in UAVs. Furthermore, such a BCI application for UAV systems can achieve the same experience of using the remote control for physically challenged patients.


Sensors ◽  
2021 ◽  
Vol 21 (7) ◽  
pp. 2447
Author(s):  
Jonghyuk Park ◽  
Jonghun Park ◽  
Dongmin Shin ◽  
Yerim Choi

As unmanned aerial vehicles have become popular, the number of accidents caused by an operator’s inattention have increased. To prevent such accidents, the operator should maintain an attention status. However, limited research has been conducted on the brain-computer interface (BCI)-based system with an alerting module for the operator’s attention recovery of unmanned aerial vehicles. Therefore, we introduce a detection and alerting system that prevents an unmanned aerial vehicle operator from falling into inattention status by using the operator’s electroencephalogram signal. The proposed system consists of the following three components: a signal processing module, which collects and preprocesses an electroencephalogram signal of an operator, an inattention detection module, which determines whether an inattention status occurred based on the preprocessed signal, and, lastly, an alert providing module that presents stimulus to an operator when inattention is detected. As a result of evaluating the performance with a real-world dataset, it was shown that the proposed system successfully contributed to the recovery of operator attention in the evaluating dataset, although statistical significance could not be established due to the small number of subjects.


2020 ◽  
Vol 20 (4) ◽  
pp. 332-342
Author(s):  
Hyung Jun Park ◽  
Seong Hee Cho ◽  
Kyung-Hwan Jang ◽  
Jin-Woon Seol ◽  
Byung-Gi Kwon ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document