scholarly journals Comparing Different Diffie-Hellman Key Exchange Flavors for LDACS

Author(s):  
Nils Maurer ◽  
Thomas Graupl ◽  
Christoph Gentsch ◽  
Corinna Schmitt
Author(s):  
Yibo Liu ◽  
Xuejing Hao ◽  
Yanjun Mao

At present, the mental health of college students has also become an important issue that urgently needs attention under the influence of the surrounding environment. It is coupled with the grim employment situation after graduation and the students’ psychological burden is becoming more and heavier. This paper based on Diffie-Hellman key exchange algorithm studied the effect of psychological stress intervention. First, the Diffie-Hellman key exchange algorithm was analyzed, and then the Diffie-Hellman prediction model was established according to the psychological pressure of college students. Secondly, the simulation test was conducted to compare the simulated results with the original data. The conclusion of the data fitting of the network model training set, verification set and test set were good and the error was very small. Finally, the detailed application of the algorithm and the model were described.


2021 ◽  
Vol 11 (19) ◽  
pp. 9276
Author(s):  
Alfred Anistoroaei ◽  
Adriana Berdich ◽  
Patricia Iosif ◽  
Bogdan Groza

Mobile device pairing inside vehicles is a ubiquitous task which requires easy to use and secure solutions. In this work we exploit the audio-video domain for pairing devices inside vehicles. In principle, we rely on the widely used elliptical curve version of the Diffie-Hellman key-exchange protocol and extract the session keys from the acoustic domain as well as from the visual domain by using the head unit display. The need for merging the audio-visual domains first stems from the fact that in-vehicle head units generally do not have a camera so they cannot use visual data from smartphones, however, they are equipped with microphones and can use them to collect audio data. Acoustic channels are less reliable as they are more prone to errors due to environmental noise. However, this noise can be also exploited in a positive way to extract secure seeds from the environment and audio channels are harder to intercept from the outside. On the other hand, visual channels are more reliable but can be more easily spotted by outsiders, so they are more vulnerable for security applications. Fortunately, mixing these two types of channels results in a solution that is both more reliable and secure for performing a key exchange.


Sensors ◽  
2019 ◽  
Vol 19 (22) ◽  
pp. 4919
Author(s):  
Bogdan Groza ◽  
Pal-Stefan Murvay

Security has become critical for in-vehicle networks as they carry safety-critical data from various components, e.g., sensors or actuators, and current research proposals were quick to react with cryptographic protocols designed for in-vehicle buses, e.g., CAN (Controller Area Network). Obviously, the majority of existing proposals are built on cryptographic primitives that rely on a secret shared key. However, how to share such a secret key is less obvious due to numerous practical constraints. In this work, we explore in a comparative manner several approaches based on a group extension of the Diffie–Hellman key-exchange protocol and identity-based authenticated key agreements. We discuss approaches based on conventional signatures and identity-based signatures, garnering advantages from bilinear pairings that open road to several well-known cryptographic constructions: short signatures, the tripartite Diffie–Hellman key exchange and identity-based signatures or key exchanges. Pairing-based cryptographic primitives do not come computationally cheap, but they offer more flexibility that leads to constructive advantages. To further improve on performance, we also account for pairing-free identity-based key exchange protocols that do not require expensive pairing operations nor explicit signing of the key material. We present both computational results on automotive-grade controllers as well as bandwidth simulations with industry-standard tools, i.e., CANoe, on modern in-vehicle buses CAN-FD and FlexRay.


Sign in / Sign up

Export Citation Format

Share Document