Double-Strength CAFFEINE: Fast Template-Free Symbolic Modeling of Analog Circuits via Implicit Canonical Form Functions and Explicit Introns

Author(s):  
T. McConaghy ◽  
G. Gielen
2010 ◽  
Vol 1247 ◽  
Author(s):  
Rocío Calderón-Villajos ◽  
Carlos Zaldo ◽  
Concepción Cascales

AbstractControlled reaction conditions in simple, template-free hydrothermal processes yield Tm-Lu2O3 and Tm-GdVO4 nanocrystals with well-defined specific morphologies and sizes. In both oxide families, nanocrystals prepared at pH 7 reaction media exhibit photoluminescence in ∼1.95 μm similar to bulk single crystals. For the lowest Tm3+ concentration (0.2 % mol) in GdVO4 measured 3H4 and 3F4 fluorescence lifetimes τ are very near to τrad.


2017 ◽  
pp. 47-53
Author(s):  
Konstantin Sergeyevich GORSHKOV ◽  
◽  
Sergei Aleksandrovich KURGANOV ◽  
Vladimir Valentinovich FILARETOV ◽  
◽  
...  

Author(s):  
B.J. Cain ◽  
G.L. Woods ◽  
A. Syed ◽  
R. Herlein ◽  
Toshihiro Nomura

Abstract Time-Resolved Emission (TRE) is a popular technique for non-invasive acquisition of time-domain waveforms from active nodes through the backside of an integrated circuit. [1] State-of-the art TRE systems offer high bandwidths (> 5 GHz), excellent spatial resolution (0.25um), and complete visibility of all nodes on the chip. TRE waveforms are typically used for detecting incorrect signal levels, race conditions, and/or timing faults with resolution of a few ps. However, extracting the exact voltage behavior from a TRE waveform is usually difficult because dynamic photon emission is a highly nonlinear process. This has limited the perceived utility of TRE in diagnosing analog circuits. In this paper, we demonstrate extraction of voltage waveforms in passing and failing conditions from a small-swing, differential logic circuit. The voltage waveforms obtained were crucial in corroborating a theory for some failures inside an 0.18um ASIC.


Sign in / Sign up

Export Citation Format

Share Document