An Active Vibration Control Method for Typical Piping System of Nuclear Power Plant

Author(s):  
Xiaomeng Zhang ◽  
Tao Sui ◽  
Haishuai Zhang ◽  
Yanzhu Zhang ◽  
Lu Liu ◽  
...  
Author(s):  
Lawrence R. Corr ◽  
William W. Clark

Abstract This paper presents a numerical study in which active and hybrid vibration confinement is compared with a conventional active vibration control method. Vibration confinement is a vibration control technique that is based on reshaping structural modes to produce “quiet areas” in a structure as opposed to adding damping as in conventional active or passive methods. In this paper, active and hybrid confinement is achieved in a flexible beam with two pairs of piezoelectric actuators and sensors and with two vibration absorbers. For comparison purposes, active damping is achieved also with two pairs of piezoelectric actuators and sensors using direct velocity feedback. The results show that both approaches are effective in controlling vibrations in the targeted area of the beam, with direct velocity feedback being slightly more cost effective in terms of required power. When combined with passive confinement, however, each method is improved with a significant reduction in required power.


2013 ◽  
Vol 644 ◽  
pp. 56-59
Author(s):  
Jin Yang Li ◽  
Hong Xia ◽  
Shou Yu Cheng

All kinds of sensor with mechanical properties often can go wrong in nuclear power plant. In this kind of situation, it puts forward a kind of active fault tolerant control method based on the improved BP neural network. Firstly, the method will train sensor by BP neural network. Secondly, it will be established dynamic model bank in all kinds of running state. The system will be detected by using BP neural network real time. When the sensor goes wrong, it will be controled by reconstruction. Taking pressurizer water-level sensor as the case, a simulation experiment was performed on the nuclear power plant simulator. The results showed that the proposed method is valid for the fault tolerant control of sensor in nuclear power plant.


Author(s):  
H. Shiihara ◽  
H. Matsushita ◽  
Y. Nagayama

A disaster happened in a nuclear power plant in Japan in August 2004, which was caused by failure of condensation water pipe in the secondary line. Shipping industries were concerned for possibility of occurrence of such a disaster in ships due to its construction similarity to marine boiler plant in steam, feed water and condensation piping for main or auxiliary boilers. Nippon Kaiji Kyokai has therefore investigated and gathered data of piping lines corrosion in ships collaborated with major Japanese ship owners right after the disaster. The results show that similar corrosion failure as in the nuclear power plant has occurred in shipboard steam/feed water/condensation water pipes for main and auxiliary boiler plants without causing severe consequences. The wall thickness measurements on actual pipe lines of steam, feed water and condensation water at bend parts, at T-junction, behind orifices, behind valves and at diffusers/reducers with a ultrasonic thickness gauge show a very definite evidence of a reduction in wall thickness of carbone steel pipes. It was confirmed that the amount of actual reduction in wall thickness could be well predicted by Kastner Equation [2–3].


1985 ◽  
Vol 107 (1) ◽  
pp. 106-111 ◽  
Author(s):  
V. Skormin

A methodology is presented for identification of a nuclear power plant piping system, which employs mathematical description in the form of transfer function matrix, frequency domain technique for estimation of system dynamic parameters, statistical technique for verification of model configuration and evaluation of parameter estimates, adaptive approach for current model updating. Model applications for estimation and monitoring of forcing functions, displacements, and stresses due to transient processes and steady state vibrations in the piping system are proposed. Methodology is illustrated by numerical examples.


2000 ◽  
Vol 2000.53 (0) ◽  
pp. 143-144
Author(s):  
Yoshitoshi JONO ◽  
Masanobu NAGATA ◽  
Zenta IWAI ◽  
Ryuichi KOHZAWA ◽  
Jun IMAMURA ◽  
...  

Author(s):  
Shota Yabui ◽  
Itsuro Kajiwara ◽  
Ryohei Okita

This paper presents active vibration control based on self-sensing for unknown target structures by direct velocity feedback (DVFB) with enhanced adaptive feed-forward cancellation (AFC). AFC is known as an adaptive control method, and the adaptive algorithm can estimate a periodic disturbance. In a previous study, an enhanced AFC was developed to compensate for a non-periodic disturbance. An active vibration control based on self-sensing by DVFB can suppress mechanical resonance by using relative velocity between the voice coil actuator and a target structure. In this study, the enhanced AFC was applied to compensate disturbance for the self-sensing vibration control system. The simulation results showed the vibration control system with DVFB and enhanced AFC could suppress mechanical resonance and compensate disturbances.


1992 ◽  
Vol 58 (548) ◽  
pp. 1034-1040 ◽  
Author(s):  
Mitsushi HINO ◽  
Zenta IWAI ◽  
Kousuke FUKUSHIMA ◽  
Ryuichi WAKAMIYA

Sign in / Sign up

Export Citation Format

Share Document