Axial magnetic field strength needed for a 126kV single break vacuum interrupter

Author(s):  
Yingyao Zhang ◽  
Yingsan Geng ◽  
Li Yu ◽  
Jing Yan ◽  
Zhiyuan Liu ◽  
...  
2010 ◽  
Vol 77 (4) ◽  
pp. 537-545 ◽  
Author(s):  
A. B. ALEXANDER ◽  
C. T. RAYNOR ◽  
D. L. WIGGINS ◽  
M. K. ROBINSON ◽  
C. C. AKPOVO ◽  
...  

AbstractWhen the krypton plasma in a DC glow discharge tube is exposed to an axial magnetic field, the turbulent energy and the characteristic dominant mode in the turbulent fluctuations are systematically and unexpectedly reduced with increasing magnetic field strength. When the index measuring the rate of transfer of energy through fluctuation scales is monitored, a lambda-like dependence on turbulent energy is routinely observed in all magnetic fields. From this, a critical turbulent energy is identified, which also decreases with increasing magnetic field strength.


1969 ◽  
Vol 47 (10) ◽  
pp. 1051-1055
Author(s):  
F. L. Curzon ◽  
R. L. Pike

A microwave resonator has been employed to study the damping of a surface wave on mercury in the presence of a vertical magnetic field. The conditions of the experiment satisfy the linearity requirements of the theory and confirm the expected dependence of the damping frequency on magnetic field strength, fluid depth, and radius.


In these experiments fast hydromagnetic waves are excited by discharging a capacitor through a single turn coil surrounding a cylindrical column of magnetized argon plasma. The plasma column is 200 cm long and 22 cm in diameter, and the axial magnetic field strength is varied in the range from 1 to 6 kG. The wave amplitude is typically 10 G, and the frequency is varied between 1.2 and 6 times the ion cyclotron frequency. Measurement of the radial variation and the relative amplitudes of the three components of the wave magnetic field shows that the oscillation is the lowest axially-symmetric mode. As predicted by the theory, the wave is elliptically polarized in the rθ plane with the magnetic vector rotating in the same sense as the electron cyclotron rotation. The experimental results demonstrate the cut-off of this mode both as the frequency is decreased and as the axial magnetic field strength is increased. Measurements of the axial wave number and absorption coefficient are in good numerical agreement with theoretical dispersion curves computed from the measured plasma parameters. This work provides quantitative evidence to support the theories currently used in treating hydromagnetic oscillations, both stable and unstable, of magnetized plasmas.


1998 ◽  
Vol 120 (4) ◽  
pp. 844-850 ◽  
Author(s):  
Nancy Ma ◽  
John Walker ◽  
David Bliss ◽  
George Bryant

This paper treats the forced convection, which is produced by the rotation of the crystal about its vertical centerline during the liquid-encapsulated Czochralski or Kyropoulos growth of compound semiconductor crystals, with a uniform vertical magnetic field. The model assumes that the magnetic field strength is sufficiently large that convective heat transfer and all inertial effects except the centripetal acceleration are negligible. With the liquid encapsulant in the radial gap between the outside surface of the crystal and the vertical wall of the crucible, the forced convection is fundamentally different from that with a free surface between the crystal and crucible for the Czochralski growth of silicon crystals. Again unlike the case for silicon growth, the forced convection for the actual nonzero electrical conductivity of an indium-phosphide crystal is virtually identical to that for an electrically insulating crystal. The electromagnetic damping of the forced convection is stronger than that of the buoyant convection. In order to maintain a given balance between the forced and buoyant convections, the angular velocity of the crystal must be increased as the magnetic field strength is increased.


1976 ◽  
Vol 32 ◽  
pp. 613-622
Author(s):  
I.A. Aslanov ◽  
Yu.S. Rustamov

SummaryMeasurements of the radial velocities and magnetic field strength of β CrB were carried out. It is shown that there is a variability with the rotation period different for various elements. The curve of the magnetic field variation measured from lines of 5 different elements: FeI, CrI, CrII, TiII, ScII and CaI has a complex shape specific for each element. This may be due to the presence of magnetic spots on the stellar surface. A comparison with the radial velocity curves suggests the presence of a least 4 spots of Ti and Cr coinciding with magnetic spots. A change of the magnetic field with optical depth is shown. The curve of the Heffvariation with the rotation period is given. A possibility of secular variations of the magnetic field is shown.


Sign in / Sign up

Export Citation Format

Share Document