Employing high resolution satellite images to update urban maps at medium-large scale and its impact in developing countries

Author(s):  
V. Baiocchi ◽  
R. Bianchini ◽  
M. Crespi ◽  
F. Maimone
Geosciences ◽  
2019 ◽  
Vol 9 (3) ◽  
pp. 123 ◽  
Author(s):  
Donatella Dominici ◽  
Sara Zollini ◽  
Maria Alicandro ◽  
Francesca Della Torre ◽  
Paolo Buscema ◽  
...  

Knowledge of a territory is an essential element in any future planning action and in appropriate territorial and environmental requalification action planning. The current large-scale availability of satellite data, thanks to very high resolution images, provides professional users in the environmental, urban planning, engineering, and territorial government sectors, in general, with large amounts of useful data with which to monitor the territory and cultural heritage. Italy is experiencing environmental emergencies, and coastal erosion is one of the greatest threats, not only to the Italian heritage and economy, but also to human life. The aim of this paper is to find a rapid way of identifying the instantaneous shoreline. This possibility could help government institutions such as regions, civil protection, etc., to analyze large areas of land quickly. The focus is on instantaneous shoreline extraction in Ortona (CH, Italy), without considering tides, using WorldView-2 satellite images (50-cm resolution in panchromatic and 2 m in multispectral). In particular, the main purpose of this paper is to compare commercial software and ACM filters to test their effectiveness.


2019 ◽  
Vol 11 (16) ◽  
pp. 1902 ◽  
Author(s):  
Shouji Du ◽  
Shihong Du ◽  
Bo Liu ◽  
Xiuyuan Zhang

Urban functional-zone (UFZ) analysis has been widely used in many applications, including urban environment evaluation, and urban planning and management. How to extract UFZs’ spatial units which delineates UFZs’ boundaries is fundamental to urban applications, but it is still unresolved. In this study, an automatic, context-enabled multiscale image segmentation method is proposed for extracting spatial units of UFZs from very-high-resolution satellite images. First, a window independent context feature is calculated to measure context information in the form of geographic nearest-neighbor distance from a pixel to different image classes. Second, a scale-adaptive approach is proposed to determine appropriate scales for each UFZ in terms of its context information and generate the initial UFZs. Finally, the graph cuts algorithm is improved to optimize the initial UFZs. Two datasets including WorldView-2 image in Beijing and GaoFen-2 image in Nanchang are used to evaluate the proposed method. The results indicate that the proposed method can generate better results from very-high-resolution satellite images than widely used approaches like image tiles and road blocks in representing UFZs. In addition, the proposed method outperforms existing methods in both segmentation quality and running time. Therefore, the proposed method appears to be promising and practical for segmenting large-scale UFZs.


2020 ◽  
Vol 12 (8) ◽  
pp. 1288 ◽  
Author(s):  
José R. G. Braga ◽  
Vinícius Peripato ◽  
Ricardo Dalagnol ◽  
Matheus P. Ferreira ◽  
Yuliya Tarabalka ◽  
...  

Tropical forests concentrate the largest diversity of species on the planet and play a key role in maintaining environmental processes. Due to the importance of those forests, there is growing interest in mapping their components and getting information at an individual tree level to conduct reliable satellite-based forest inventory for biomass and species distribution qualification. Individual tree crown information could be manually gathered from high resolution satellite images; however, to achieve this task at large-scale, an algorithm to identify and delineate each tree crown individually, with high accuracy, is a prerequisite. In this study, we propose the application of a convolutional neural network—Mask R-CNN algorithm—to perform the tree crown detection and delineation. The algorithm uses very high-resolution satellite images from tropical forests. The results obtained are promising—the R e c a l l , P r e c i s i o n , and F 1 score values obtained were were 0.81 , 0.91 , and 0.86 , respectively. In the study site, the total of tree crowns delineated was 59,062 . These results suggest that this algorithm can be used to assist the planning and conduction of forest inventories. As the algorithm is based on a Deep Learning approach, it can be systematically trained and used for other regions.


2018 ◽  
Vol 11 (1) ◽  
pp. 11 ◽  
Author(s):  
Weijia Li ◽  
Runmin Dong ◽  
Haohuan Fu ◽  
and Le Yu

Being an important economic crop that contributes 35% of the total consumption of vegetable oil, remote sensing-based quantitative detection of oil palm trees has long been a key research direction for both agriculture and environmental purposes. While existing methods already demonstrate satisfactory effectiveness for small regions, performing the detection for a large region with satisfactory accuracy is still challenging. In this study, we proposed a two-stage convolutional neural network (TS-CNN)-based oil palm detection method using high-resolution satellite images (i.e. Quickbird) in a large-scale study area of Malaysia. The TS-CNN consists of one CNN for land cover classification and one CNN for object classification. The two CNNs were trained and optimized independently based on 20,000 samples collected through human interpretation. For the large-scale oil palm detection for an area of 55 km2, we proposed an effective workflow that consists of an overlapping partitioning method for large-scale image division, a multi-scale sliding window method for oil palm coordinate prediction, and a minimum distance filter method for post-processing. Our proposed approach achieves a much higher average F1-score of 94.99% in our study area compared with existing oil palm detection methods (87.95%, 81.80%, 80.61%, and 78.35% for single-stage CNN, Support Vector Machine (SVM), Random Forest (RF), and Artificial Neural Network (ANN), respectively), and much fewer confusions with other vegetation and buildings in the whole image detection results.


Author(s):  
M. Sonobe

Abstract. A large-scale disaster has occurred due to the earthquake. In particular, 20% of the world's earthquakes with a magnitude of 6 or more occur near Japan. Damage analysis of buildings by image analysis have been effectively carried out using optical high-resolution satellite images and aerial photograph with spatial resolution of about 2 m or less. In this study, the damaged buildings caused by large-scale and continuous earthquakes in Kumamoto, Japan that occurred in April 2016 was selected as a typical example of damaged buildings. For these earthquake event, the applicability of damage distribution of buildings and recovery/restoration status by texture analysis was examined. The applicability of the representative in the dissimilarity texture analysis methods Gray- Level Co-occurrence Matrix (GLCM) method by image interpretation in the case of a large number of collapsed and wrecked buildings in a wide area was assessed. These results suggest that dissimilarity was applicable to the extraction of damaged and removed buildings in the event of such an earthquake. In addition, the analysis results were appropriately evaluated by comparing the field survey results with the image interpretation results of the pan-sharpened image. From these results, we confirmed the effectiveness of texture analysis using time-series high-resolution satellite images in grasping the damaged buildings before and immediately after the disaster and in the restoration situation 1 year after the disaster.


Author(s):  
Y. Han ◽  
S. Wang ◽  
D. Gong ◽  
Y. Wang ◽  
Y. Wang ◽  
...  

Abstract. Data from the optical satellite imaging sensors running 24/7, is collecting in embarrassing abundance nowadays. Besides more suitable for large-scale mapping, multi-view high-resolution satellite images (HRSI) are cheaper when comparing to Light Detection And Ranging (LiDAR) data and aerial remotely sensed images, which are more accessible sources for digital surface modelling and updating. Digital Surface Model (DSM) generation is one of the most critical steps for mapping, 3D modelling, and semantic interpretation. Computing DSM from this dataset is relatively new, and several solutions exist in the market, both commercial and open-source solutions, the performances of these solutions have not yet been comprehensively analyzed. Although some works and challenges have focused on the DSM generation pipeline and the geometric accuracy of the generated DSM, the evaluations, however, do not consider the latest solutions as the fast development in this domain. In this work, we discussed the pipeline of the considered both commercial and opensource solutions, assessed the accuracy of the multi-view satellite image-based DSMs generation methods with LiDAR-derived DSM as the ground truth. Three solutions, including Satellite Stereo Pipeline (S2P), PCI Geomatica, and Agisoft Metashape, are evaluated on a WorldView-3 multi-view satellite dataset both quantitatively and qualitatively with the LiDAR ground truth. Our comparison and findings are presented in the experimental section.


2019 ◽  
Vol 11 (3) ◽  
pp. 312 ◽  
Author(s):  
Maximilian Freudenberg ◽  
Nils Nölke ◽  
Alejandro Agostini ◽  
Kira Urban ◽  
Florentin Wörgötter ◽  
...  

Oil and coconut palm trees are important crops in many tropical countries, which are either planted as plantations or scattered in the landscape. Monitoring in terms of counting provides useful information for various stakeholders. Most of the existing monitoring methods are based on spectral profiles or simple neural networks and either fall short in terms of accuracy or speed. We use a neural network of the U-Net type in order to detect oil and coconut palms on very high resolution satellite images. The method is applied to two different study areas: (1) large monoculture oil palm plantations in Jambi, Indonesia, and (2) coconut palms in the Bengaluru Metropolitan Region in India. The results show that the proposed method reaches a performance comparable to state of the art approaches, while being about one order of magnitude faster. We reach a maximum throughput of 235 ha/s with a spatial image resolution of 40 cm. The proposed method proves to be reliable even under difficult conditions, such as shadows or urban areas, and can easily be transferred from one region to another. The method detected palms with accuracies between 89% and 92%.


Sign in / Sign up

Export Citation Format

Share Document