Point Correspondence Validation under Unknown Radial Distortion

Author(s):  
William X. Liu ◽  
Tat-Jun Chin ◽  
Gustavo Carneiro ◽  
David Suter
2020 ◽  
Vol 13 (6) ◽  
pp. 1-8
Author(s):  
AN Ling-ping ◽  
◽  
WANG Shuang ◽  
ZHANG Geng ◽  
LI Juan ◽  
...  

Optik ◽  
2021 ◽  
pp. 167895
Author(s):  
Jong-Chol Kang ◽  
Chol-Su Kim ◽  
Il-Jun Pak ◽  
Ju-Ryong Son ◽  
Chol-Sun Kim

2020 ◽  
Vol 10 (14) ◽  
pp. 4947
Author(s):  
Jang Pyo Bae ◽  
Malinda Vania ◽  
Siyeop Yoon ◽  
Sojeong Cheon ◽  
Chang Hwan Yoon ◽  
...  

The creation of 3D models for cardiac mapping systems is time-consuming, and the models suffer from issues with repeatability among operators. The present study aimed to construct a double-shaped model composed of the left ventricle and left atrium. We developed cascaded-regression-based segmentation software with probabilistic point and appearance correspondence. Group-wise registration of point sets constructs the point correspondence from probabilistic matches, and the proposed method also calculates appearance correspondence from these probabilistic matches. Final point correspondence of group-wise registration constructed independently for three surfaces of the double-shaped model. Stochastic appearance selection of cascaded regression enables the effective construction in the aspect of memory usage and computation time. The two correspondence construction methods of active appearance models were compared in terms of the paired segmentation of the left atrium (LA) and left ventricle (LV). The proposed method segmented 35 cardiac CTs in six-fold cross-validation, and the symmetric surface distance (SSD), Hausdorff distance (HD), and Dice coefficient (DC), were used for evaluation. The proposed method produced 1.88 ± 0.37 mm of LV SSD, 2.25 ± 0.51 mm* of LA SSD, and 2.06 ± 0.34 mm* of the left heart (LH) SSD. Additionally, DC was 80.45% ± 4.27%***, where * p < 0.05, ** p < 0.01, and *** p < 0.001. All p values derive from paired t-tests comparing iterative closest registration with the proposed method. In conclusion, the authors developed a cascaded regression framework for 3D cardiac CT segmentation.


Geophysics ◽  
2019 ◽  
Vol 84 (3) ◽  
pp. C159-C170 ◽  
Author(s):  
Yuriy Ivanov ◽  
Alexey Stovas

Based on the rotation of a slowness surface in anisotropic media, we have derived a set of mapping operators that establishes a point-to-point correspondence for the traveltime and relative-geometric-spreading surfaces between these calculated in nonrotated and rotated media. The mapping approach allows one to efficiently obtain the aforementioned surfaces in a rotated anisotropic medium from precomputed surfaces in the nonrotated medium. The process consists of two steps: calculation of a necessary kinematic attribute in a nonrotated, e.g., orthorhombic (ORT), medium, and subsequent mapping of the obtained values to a transformed, e.g., rotated ORT, medium. The operators we obtained are applicable to anisotropic media of any type; they are 3D and are expressed through a general form of the transformation matrix. The mapping equations can be used to develop moveout and relative-geometric-spreading approximations in rotated anisotropic media from existing approximations in nonrotated media. Although our operators are derived in case of a homogeneous medium and for a one-way propagation only, we discuss their extension to vertically heterogeneous media and to reflected (and converted) waves.


Sign in / Sign up

Export Citation Format

Share Document