3D mapping of kinematic attributes in anisotropic media
Based on the rotation of a slowness surface in anisotropic media, we have derived a set of mapping operators that establishes a point-to-point correspondence for the traveltime and relative-geometric-spreading surfaces between these calculated in nonrotated and rotated media. The mapping approach allows one to efficiently obtain the aforementioned surfaces in a rotated anisotropic medium from precomputed surfaces in the nonrotated medium. The process consists of two steps: calculation of a necessary kinematic attribute in a nonrotated, e.g., orthorhombic (ORT), medium, and subsequent mapping of the obtained values to a transformed, e.g., rotated ORT, medium. The operators we obtained are applicable to anisotropic media of any type; they are 3D and are expressed through a general form of the transformation matrix. The mapping equations can be used to develop moveout and relative-geometric-spreading approximations in rotated anisotropic media from existing approximations in nonrotated media. Although our operators are derived in case of a homogeneous medium and for a one-way propagation only, we discuss their extension to vertically heterogeneous media and to reflected (and converted) waves.