slowness surface
Recently Published Documents


TOTAL DOCUMENTS

56
(FIVE YEARS 3)

H-INDEX

16
(FIVE YEARS 1)

2020 ◽  
Vol 224 (1) ◽  
pp. 449-467
Author(s):  
Shibo Xu ◽  
Alexey Stovas ◽  
Hitoshi Mikada ◽  
Junichi Takekawa

SUMMARY Triplicated traveltime curve has three arrivals at a given distance with the bowtie shape in the traveltime-offset curve. The existence of the triplication can cause a lot of problems such as several arrivals for the same wave type, anomalous amplitudes near caustics, anomalous behaviour of rays near caustics, which leads to the structure imaging deviation and redundant signal in the inversion of the model parameters. Hence, triplication prediction becomes necessary when the medium is known. The research of the triplication in transversely isotropic medium with a vertical symmetry axis (VTI) has been well investigated and it has become clear that, apart from the point singularity case, the triplicated traveltime only occurs for S wave. On contrary to the VTI case, the triplication behaviour in the orthorhombic (ORT) medium has not been well focused due to the model complexity. In this paper, we derive the second-order coefficients of the slowness surface for two S waves in the vicinity of three symmetry axes and define the elliptic form function to examine the existence of the on-axis triplication in ORT model. The existence of the on-axis triplication is found by the sign of the defined curvature coefficients. Three ORT models are defined in the numerical examples to analyse the behaviour of the on-axis triplication. The plots of the group velocity surface in the vicinity of three symmetry axes are shown for different ORT models where different shapes: convex or the saddle-shaped (concave along one direction and convex along with another) indicates the existence of the on-axis triplication. We also show the traveltime plots (associated with the group velocity surface) to illustrate the effect of the on-axis triplication.


Geophysics ◽  
2019 ◽  
Vol 84 (6) ◽  
pp. C311-C322
Author(s):  
Stephen Horne ◽  
Richard T. Coates ◽  
Alexei Bolshakov

We have revisited the debate about whether flexural waves from dipole sonic tools and standard processing algorithms measure group or phase velocities in anisotropic formations. We observe that much of the confusion arises from a failure to understand the different meanings of group and phase velocities. Using a transversely isotropic medium with a vertical axis of symmetry that exhibits a triplication in its S-wave group slowness surface, we generate synthetic flexural sonic waveforms corresponding to boreholes at angles of 0°–90° with respect to the anisotropy symmetry axis in 1° increments. We processed these synthetic data using standard time- and frequency-domain semblance methods. The results conclusively demonstrate that dipole sonic logs measure the group slowness for the group angle corresponding to the angle between the borehole and the anisotropic symmetry axis. In addition, data that we have evaluated suggest that current tool geometries and semblance processing may not always be sensitive enough to resolve all branches of the group slowness triplication surface.


Geophysics ◽  
2019 ◽  
Vol 84 (3) ◽  
pp. C159-C170 ◽  
Author(s):  
Yuriy Ivanov ◽  
Alexey Stovas

Based on the rotation of a slowness surface in anisotropic media, we have derived a set of mapping operators that establishes a point-to-point correspondence for the traveltime and relative-geometric-spreading surfaces between these calculated in nonrotated and rotated media. The mapping approach allows one to efficiently obtain the aforementioned surfaces in a rotated anisotropic medium from precomputed surfaces in the nonrotated medium. The process consists of two steps: calculation of a necessary kinematic attribute in a nonrotated, e.g., orthorhombic (ORT), medium, and subsequent mapping of the obtained values to a transformed, e.g., rotated ORT, medium. The operators we obtained are applicable to anisotropic media of any type; they are 3D and are expressed through a general form of the transformation matrix. The mapping equations can be used to develop moveout and relative-geometric-spreading approximations in rotated anisotropic media from existing approximations in nonrotated media. Although our operators are derived in case of a homogeneous medium and for a one-way propagation only, we discuss their extension to vertically heterogeneous media and to reflected (and converted) waves.


Geophysics ◽  
2017 ◽  
Vol 82 (4) ◽  
pp. WA11-WA21 ◽  
Author(s):  
Yuriy Ivanov ◽  
Alexey Stovas

Quasi S-wave propagation in low-symmetry anisotropic media is complicated due to the existence of point singularities (conical points) — points in the phase space at which slowness sheets of the split S-waves touch each other. At these points, two eigenvalues of the Christoffel tensor (associated with the quasi S-waves) degenerate into one and polarization directions of the S-waves, which lay in the plane orthogonal to the polarization of the quasi longitudinal wave, are not uniquely defined. In the vicinity of these points, slowness sheets of the S-waves have complicated shapes, leading to rapid variations in polarization directions, multipathing, and cusps and discontinuities of the shear wavefronts. In a tilted orthorhombic medium, the point singularities can occur close to the vertical, distorting the traveltime parameters that are defined at the zero offset. We have analyzed the influence of the singularities on these parameters by examining the derivatives of the slowness surface up to the fourth order. Using two orthorhombic numerical models of different shear anisotropy strength and with different number of singularity points, we evaluate the complexity of the slowness sheets in the vicinity of the conical points and analyze how the traveltime parameters are affected by the singularities. In particular, we observe that the hyperbolic region associated with the singularity points in a model with moderate to strong shear anisotropy spans over a big portion of the slowness surfaces and the traveltime parameters are strongly affected outside the hyperbolic region. In general, the fast shear mode is less affected by the singularities; however, the effect is still very pronounced. Moreover, the hyperbolic region associated with the singularity points on the slow S-wave affects the slowness surface of the fast mode extensively. In addition, we evaluate a relation between the slowness surface Gaussian curvature and the relative geometric spreading, which has anomalous behavior due to the singularities.


Geophysics ◽  
2017 ◽  
Vol 82 (4) ◽  
pp. WA45-WA53 ◽  
Author(s):  
Vladimir Grechka

Three algebraic surfaces — the slowness surface, the phase-velocity surface, and the group-velocity surface — play fundamental roles in the theory of seismic wave propagation in anisotropic elastic media. While the slowness (sometimes called phase-slowness) and phase-velocity surfaces are fairly simple and their main algebraic properties are well understood, the group-velocity surfaces are extremely complex; they are complex to the extent that even the algebraic degree, [Formula: see text], of a system of polynomials describing the general group-velocity surface is currently unknown, and only the upper bound of the degree [Formula: see text] is available. This paper establishes the exact degree [Formula: see text] of the general group-velocity surface along with two closely related to [Formula: see text] quantities: the maximum number, [Formula: see text], of body waves that may propagate along a ray direction in a homogeneous anisotropic elastic solid [Formula: see text] and the maximum number, [Formula: see text], of isolated, singularity-unrelated cusps of a group-velocity surface [Formula: see text].


Geophysics ◽  
2016 ◽  
Vol 81 (6) ◽  
pp. C319-C336 ◽  
Author(s):  
Yuriy Ivanov ◽  
Alexey Stovas

Normal moveout (NMO) velocity is a commonly used tool in the seismic industry nowadays. In 3D surveys, the variation of the NMO velocity in a horizontal plane is elliptic in shape for the anisotropy or heterogeneity of any strength (apart from a few exotic cases). The NMO ellipse is used for Dix-type inversion and can provide important information on the strength of anisotropy and the orientation of the vertical symmetry planes, which can correspond, for example, to fractures’ orientation and compliances. To describe a vertically fractured finely layered medium (the fracture is orthogonal to the layering), an anisotropy of orthorhombic symmetry is commonly used. In areas with complicated geology and stress distribution, the orientation of the orthorhombic symmetry planes can be considerably altered from the initial position. We have derived the exact equations for the NMO ellipse in an elastic tilted orthorhombic layer with an arbitrary orientation of the symmetry planes. We have evaluated pure and converted wave modes and determined that the influence of the orientation upon the NMO ellipse for all the waves is strong. We have considered acoustic and ellipsoidal orthorhombic approximations of the NMO ellipse equations, which we used to develop a numerical inversion scheme. We determined that in the most general case of arbitrary orientation of the orthorhombic symmetry planes, the inversion results are unreliable due to significant trade-offs between the parameters. We have evaluated S-wave features such as point singularities (slowness surfaces of the split S-waves cross) and triplications (due to concaveness of the individual S-wave mode slowness surface) and their influence on the NMO ellipse.


Geophysics ◽  
2016 ◽  
Vol 81 (3) ◽  
pp. C99-C112 ◽  
Author(s):  
Qi Hao ◽  
Alexey Stovas

We have developed an analytic and approximate formula for vertical slowness components of down- and upgoing plane P waves in 3D tilted orthorhombic media. A perturbation method and Shanks transform were used to derive the approximation for slowness surface of P waves in tilted orthorhombic media. We have also quantitatively described the validity range of the radial horizontal slowness components for the proposed formula. The validity range was affected by the strength of the anellipticity of an orthorhombic medium: the stronger the anellipticity, the smaller the validity range. Numerical examples determined that the proposed formula is accurate for tilted orthorhombic media with weak to strong anellipticity. We have also evaluated in detail the application of the proposed formula on calculating the P-wave intercept time in the [Formula: see text] domain for horizontally layered, tilted orthorhombic models. Our formula is useful for ray tracing, phase-shift migration, and [Formula: see text] domain intercept time approximation for tilted orthorhombic media.


Sign in / Sign up

Export Citation Format

Share Document