CRM system based on user demand side response in the smart grid application

Author(s):  
Qin Lijun ◽  
Jin Huawei ◽  
Li Meng ◽  
Wang Lei
Author(s):  
Andisheh Ashourpouri ◽  
Arindam Ghosh ◽  
Sumedha Rajakaruna

Abstract Aggregated loads play a significant role in maintaining the frequency of power system when the generation is not able to follow frequency deviations. An automatic Demand Dispatch (DD) enables the power system to employ the aggregated loads for balancing demand and supply. In this paper, a Demand Side Frequency Droop (DSFD) has been proposed which provides ancillary service to the grid and maintains the frequency of the power system when the generation system is not capable of following the demand. At the time of a frequency fall/rise, Balancing Authority (BA) can detect aggregated load or group of aggregated loads that have power consumption above or below their standard maximum/minimum consumption levels. Then, the BA issues a droop-based signal to the relevant aggregator. Afterwards, the DSFD will be implemented in the aggregator or the group of aggregators to specify the required power consumption amount for bringing the frequency back to its rated level. Subsequently, this signal will be sent to the Appliance Management Unit (AMU) at each participating house. The AMU sends the signal in the form of deferral or interruptible commands to the appliances depending on the priority, availability and the specification of the appliances. It will be demonstrated that the proposed DSFD control maintains the frequency of the power system within a specified range.


2021 ◽  
Vol 9 ◽  
Author(s):  
Qi Zhu ◽  
Yingjie Wang ◽  
Jiuxu Song ◽  
L. Jiang ◽  
Yingliang Li

Frequency stability of the power system is impacted by the increasing penetration of wind power because the wind power is intermittent. Meanwhile, sometimes the demand side loads increase quickly to require more power than total power produced. So balancing the active power in the power system to maintain the frequency is the main challenge of the high penetration of wind power to the smart grid. This paper proposes coordination rotor speed control (RSC), pitch angle control (PAC) and inertial control (IC) to control wind turbines, together with demand side response (DSR) participating in frequency regulation to balance active power in the power system. Firstly, the model of a single area load frequency control (LFC) system is obtained, which includes variable-speed wind turbines (VSWT) and DSR containing aggregated air conditioners and plug-in electric vehicles (PEVs). Then the RSC, PAC and IC, which controls wind turbines participating in frequency regulation in the power system, are introduced, respectively. Finally, the coordination of these three methods for wind turbines in different wind speeds is proposed. Case studies are carried out for the single area LFC system with a wind farm and DSR supported grid frequency. Coordination RSC and PAC combined IC are used to control wind turbines with DSR to balance active power in the power system. The proposed method used in the power system with high penetration of wind power and fluctuation of demand load is tested, respectively. Coordinated RSC or PAC with DSR can increase penetration of wind power and reduce peak load.


Sign in / Sign up

Export Citation Format

Share Document