Security Testing of Unmanned Flight System

Author(s):  
Xiao-Ting Meng ◽  
Li-Li Yu
2005 ◽  
Vol 4 (2) ◽  
pp. 393-400
Author(s):  
Pallavali Radha ◽  
G. Sireesha

The data distributors work is to give sensitive data to a set of presumably trusted third party agents.The data i.e., sent to these third parties are available on the unauthorized places like web and or some ones systems, due to data leakage. The distributor must know the way the data was leaked from one or more agents instead of as opposed to having been independently gathered by other means. Our new proposal on data allocation strategies will improve the probability of identifying leakages along with Security attacks typically result from unintended behaviors or invalid inputs.  Due to too many invalid inputs in the real world programs is labor intensive about security testing.The most desirable thing is to automate or partially automate security-testing process. In this paper we represented Predicate/ Transition nets approach for security tests automated generationby using formal threat models to detect the agents using allocation strategies without modifying the original data.The guilty agent is the one who leaks the distributed data. To detect guilty agents more effectively the idea is to distribute the data intelligently to agents based on sample data request and explicit data request. The fake object implementation algorithms will improve the distributor chance of detecting guilty agents.


2018 ◽  
Vol 6 (12) ◽  
pp. 553-557
Author(s):  
A. Punitha ◽  
D. Sukanya Bai ◽  
K. Lavanya
Keyword(s):  

Author(s):  
Gregory F. Dubos ◽  
David P. Coren ◽  
Alek Kerzhner ◽  
Seung H. Chung ◽  
Jean-Francois Castet

Drones ◽  
2021 ◽  
Vol 5 (3) ◽  
pp. 68
Author(s):  
Jiwei Fan ◽  
Xiaogang Yang ◽  
Ruitao Lu ◽  
Xueli Xie ◽  
Weipeng Li

Unmanned aerial vehicles (UAV) and related technologies have played an active role in the prevention and control of novel coronaviruses at home and abroad, especially in epidemic prevention, surveillance, and elimination. However, the existing UAVs have a single function, limited processing capacity, and poor interaction. To overcome these shortcomings, we designed an intelligent anti-epidemic patrol detection and warning flight system, which integrates UAV autonomous navigation, deep learning, intelligent voice, and other technologies. Based on the convolution neural network and deep learning technology, the system possesses a crowd density detection method and a face mask detection method, which can detect the position of dense crowds. Intelligent voice alarm technology was used to achieve an intelligent alarm system for abnormal situations, such as crowd-gathering areas and people without masks, and to carry out intelligent dissemination of epidemic prevention policies, which provides a powerful technical means for epidemic prevention and delaying their spread. To verify the superiority and feasibility of the system, high-precision online analysis was carried out for the crowd in the inspection area, and pedestrians’ faces were detected on the ground to identify whether they were wearing a mask. The experimental results show that the mean absolute error (MAE) of the crowd density detection was less than 8.4, and the mean average precision (mAP) of face mask detection was 61.42%. The system can provide convenient and accurate evaluation information for decision-makers and meets the requirements of real-time and accurate detection.


Sign in / Sign up

Export Citation Format

Share Document