Knowledge-based Digital Twin Model Evolution Management Method for Mechanical Products

Author(s):  
Menglei Zheng ◽  
Ling Tian
2022 ◽  
Vol 355 ◽  
pp. 02018
Author(s):  
Menglei Zheng ◽  
Ling Tian

With the rapid increase of multi-source heterogeneous dynamic data of mechanical products, the digital twin technology is considered to be an important method to realize the deep integration of product data and intelligent manufacturing. As a digital archive of the physical entity in entire life cycle, the mechanical product digital twin model is cross-phased and multi-domain. Therefore, safe and stable cooperative modeling has become a basic technical problem that needs to be solved urgently. In this paper, we proposed a blockchain-based collaborative modeling method for the digital twin ontology model of mechanical products. First, an authorization network was constructed among stakeholders. Then modeling processes of the digital twin were mapped to ontology operations and formatted through extensible markup language. Finally, consensuses were obtained based on practical byzantine fault tolerance. And a material modification process of a helicopter damper bearing was taken as an example to verify. The proposed method enables all participants to accurately obtain the latest state of the digital twin model, and has the advantages of tamper-proof, traceability, and decentralization.


2021 ◽  
Vol 16 (1) ◽  
Author(s):  
Mingli Wang ◽  
Huikuan Gu ◽  
Jiang Hu ◽  
Jian Liang ◽  
Sisi Xu ◽  
...  

Abstract Background and purpose To explore whether a highly refined dose volume histograms (DVH) prediction model can improve the accuracy and reliability of knowledge-based volumetric modulated arc therapy (VMAT) planning for cervical cancer. Methods and materials The proposed model underwent repeated refining through progressive training until the training samples increased from initial 25 prior plans up to 100 cases. The estimated DVHs derived from the prediction models of different runs of training were compared in 35 new cervical cancer patients to analyze the effect of such an interactive plan and model evolution method. The reliability and efficiency of knowledge-based planning (KBP) using this highly refined model in improving the consistency and quality of the VMAT plans were also evaluated. Results The prediction ability was reinforced with the increased number of refinements in terms of normal tissue sparing. With enhanced prediction accuracy, more than 60% of automatic plan-6 (AP-6) plans (22/35) can be directly approved for clinical treatment without any manual revision. The plan quality scores for clinically approved plans (CPs) and manual plans (MPs) were on average 89.02 ± 4.83 and 86.48 ± 3.92 (p < 0.001). Knowledge-based planning significantly reduced the Dmean and V18 Gy for kidney (L/R), the Dmean, V30 Gy, and V40 Gy for bladder, rectum, and femoral head (L/R). Conclusion The proposed model evolution method provides a practical way for the KBP to enhance its prediction ability with minimal human intervene. This highly refined prediction model can better guide KBP in improving the consistency and quality of the VMAT plans.


2021 ◽  
Vol 12 ◽  
Author(s):  
Pietro Barbiero ◽  
Ramon Viñas Torné ◽  
Pietro Lió

Objective: Modern medicine needs to shift from a wait and react, curative discipline to a preventative, interdisciplinary science aiming at providing personalized, systemic, and precise treatment plans to patients. To this purpose, we propose a “digital twin” of patients modeling the human body as a whole and providing a panoramic view over individuals' conditions.Methods: We propose a general framework that composes advanced artificial intelligence (AI) approaches and integrates mathematical modeling in order to provide a panoramic view over current and future pathophysiological conditions. Our modular architecture is based on a graph neural network (GNN) forecasting clinically relevant endpoints (such as blood pressure) and a generative adversarial network (GAN) providing a proof of concept of transcriptomic integrability.Results: We tested our digital twin model on two simulated clinical case studies combining information at organ, tissue, and cellular level. We provided a panoramic overview over current and future patient's conditions by monitoring and forecasting clinically relevant endpoints representing the evolution of patient's vital parameters using the GNN model. We showed how to use the GAN to generate multi-tissue expression data for blood and lung to find associations between cytokines conditioned on the expression of genes in the renin–angiotensin pathway. Our approach was to detect inflammatory cytokines, which are known to have effects on blood pressure and have previously been associated with SARS-CoV-2 infection (e.g., CXCR6, XCL1, and others).Significance: The graph representation of a computational patient has potential to solve important technological challenges in integrating multiscale computational modeling with AI. We believe that this work represents a step forward toward next-generation devices for precision and predictive medicine.


Sign in / Sign up

Export Citation Format

Share Document