Voltage profile improvement in distribution networks using the whale optimization algorithm

Author(s):  
Bogdan C. Neagu ◽  
Ovidiu Ivanov ◽  
Mihai Gavrilas
2018 ◽  
Vol 8 (5) ◽  
pp. 3445-3449 ◽  
Author(s):  
P. Balamurugan ◽  
T. Yuvaraj ◽  
P. Muthukannan

This paper deals with a new approach implemented to decrease power losses and improve voltage profile in distribution networks using Distribution STATic COMpensator (DSTATCOM). DSTATCOM location can be determined by the voltage stability index (VSI) and sizing can be identified by nature inspired, recently developed whale optimization algorithm (WOA). To check efficacy, the proposed technique is tested on two standard buses: Indian rural electrification 28-bus and IEEE 69-bus distribution systems. Obtained results show that optimal allocation of DSTATCOM effectively reduces power losses and improves voltage profile.


Distributed generation (DG) units can provide many benefits when they are incorporated along the distribution network/system. These benefits are more if DG units are connected at suitable nodes with appropriate rating otherwise, they may cause to increased power loss and poor voltage profile. In this work, optimal allocation (both location and size) problem is solved by considering power loss minimization as an objective function. An analytical method “index vector method (IVM)” is applied to find DG location. A new optimization algorithm “Whale Optimization Algorithm (WOA)” is employed to determine the DG rating. Two popularly known test systems “IEEE 33 & IEEE 69”bus systems are used to evaluate the efficacy of IVM and WOA.


This paper provides a new approach for solving the problem of network reconfiguration in the presence of Whale Optimization Algorithm (WOA). It is aimed at reducing actual power loss and enlightening the voltage profile in the supply system. The voltage and branch current capacity constraints have been included in the objective function evaluation. The method has been evaluated at three separate heuristic algorithms on 33-bus radial distribution systems to demonstrate the performance and effectiveness of the proposed method. In this paper the comparison of performance of two latest optimization techniques such as Whale Optimization Algorithm (WOA) with classic optimization techniques such as Genetic Algorithm (GA) and Particle Swarm Optimization (PSO). The new optimization technique produces better result compare to other two optimization logarithm..


2019 ◽  
Vol 8 (3) ◽  
pp. 2392-2398

The prime motto of the electrical power system is to provide the good and high quality power to the consumers. As the life in the society is expanding hugely, hence the need of the electrical power is additionally expanding suggestively. In this manner expanding the power generation as well as beating the significant issues in the electrical distribution system has turned into a test. The strange conditions can't be normal however when happened; the recuperation ought to be made as quickly as time permits. In this work, a modern artificial intelligence based algorithm is implemented for the reconfiguration of an electrical radial distribution network. This algorithm helps to bring down the active power loss and intensify the voltage profile of the network. This paper has proposed a nature-based guided metaheuristic Whale Optimization Algorithm (WOA). WOA is motivated by the smart foraging approach of the humpback whales. To ratify the efficiency of the proposed approach, WOA is successfully simulated on IEEE standard 69 bus and 119 bus system.


Energies ◽  
2021 ◽  
Vol 14 (11) ◽  
pp. 3239
Author(s):  
Wael S. Hassanein ◽  
Marwa M. Ahmed ◽  
Mohamed I. Mosaad ◽  
A. Abu-Siada

Real-time estimation of transmission line (TL) parameters is essential for proper management of transmission and distribution networks. These parameters can be used to detect incipient faults within the line and hence avoid any potential consequences. While some attempts can be found in the literature to estimate TL parameters, the presented techniques are either complex or impractical. Moreover, none of the presented techniques published in the literature so far can be implemented in real time. This paper presents a cost-effective technique to estimate TL parameters in real time. The proposed technique employs easily accessible voltage and current data measured at both ends of the line. For simplicity, only one quarter of the measured data is sampled and utilized in a developed objective function that is solved using the whale optimization algorithm (WOA) to estimate the TL parameters. The proposed objective function comprises the sum of square errors of the measured data and the corresponding estimated values. The robustness of the proposed technique is tested on a simple two-bus and the IEEE 14-bus systems. The impact of uncertainties in the measured data including magnitude, phase, and communication delay on the performance of the proposed estimation technique is also investigated. Results reveal the effectiveness of the proposed method that can be implemented in real time to detect any incipient variations in the TL parameters due to abnormal or fault events.


2018 ◽  
Vol 7 (3) ◽  
pp. 442-449
Author(s):  
Mohd Nurulhady Morshidi ◽  
Ismail Musirin ◽  
Siti Rafidah Abdul Rahim ◽  
Mohd Rafi Adzman ◽  
Mohamad Hatta Hussain

This paper presents Whale Optimization Algorithm (WOA) Based Technique for Distributed Generation Installation in Transmission System. In this study, WOA optimization engine is developed for the installation of Distributed Generation (DG). Prior to the optimization process, a pre-developed voltage stability index termed Fast Voltage Stability Index (FVSI) was used as an indicator to identify the location for the DG to be installed in the system. Meanwhile, for sizing the DG WOA is employed to identify the optimal sizing. By installing DG in the transmission system, voltage stability and voltage profile can be improved, while power losses can be minimized. The proposed algorithm was tested on 30-bus radial distribution network. Results obtained from the EP were compared with firefly algorithm (FA); indicating better results. This highlights the strength of WOA over FA in terms of minimizing total losses.


2022 ◽  
Vol 13 (1) ◽  
pp. 0-0

For optimum placement of distributed generation (DG) units in balanced radial distribution network for loss minimization, implementation of whale optimization algorithm (WOA), a state-of-the-art meta-heuristic optimization algorithm is proposed in this paper. Encouraged by bubble-net hunting strategy of whales, WOA mimes the collective practice of humpback whales. For validating performance in solving the mentioned problem, the suggested technique is implemented on IEEE 33-bus and IEEE 69-bus balanced radial distribution test networks. The obtained results demonstrate that feasible and effective solutions are obtained using the proposed approach and can be used as a propitious substitute in practical power systems to overcome the optimum DG siting and sizing issue. Also concerning the best knowledge of the authors, it is the first report on the application of WOA in solving optimum DG siting and sizing issue.


Author(s):  
Nitin Chouhan ◽  
Uma Rathore Bhatt ◽  
Raksha Upadhyay

: Fiber Wireless Access Network is the blend of passive optical network and wireless access network. This network provides higher capacity, better flexibility, more stability and improved reliability to the users at lower cost. Network component (such as Optical Network Unit (ONU)) placement is one of the major research issues which affects the network design, performance and cost. Considering all these concerns, we implement customized Whale Optimization Algorithm (WOA) for ONU placement. Initially whale optimization algorithm is applied to get optimized position of ONUs, which is followed by reduction of number of ONUs in the network. Reduction of ONUs is done such that with fewer number of ONUs all routers present in the network can communicate. In order to ensure the performance of the network we compute the network parameters such as Packet Delivery Ratio (PDR), Total Time for Delivering the Packets in the Network (TTDPN) and percentage reduction in power consumption for the proposed algorithm. The performance of the proposed work is compared with existing algorithms (deterministic and centrally placed ONUs with predefined hops) and has been analyzed through extensive simulation. The result shows that the proposed algorithm is superior to the other algorithms in terms of minimum required ONUs and reduced power consumption in the network with almost same packet delivery ratio and total time for delivering the packets in the network. Therefore, present work is suitable for developing cost-effective FiWi network with maintained network performance.


Sign in / Sign up

Export Citation Format

Share Document