Design of Loosely Coupled Transformer of Wireless Power Transfer for Higher Misalignment Tolerance of System Efficiency

Author(s):  
Haisen Zhao ◽  
Yufei Wang ◽  
Hassan H. Eldeeb ◽  
Yang Zhan ◽  
Guorui Xu ◽  
...  
2016 ◽  
Vol 3 (1) ◽  
pp. 9-14
Author(s):  
Nurcan Keskin ◽  
Huaping Liu

Power transfer efficiency in loosely coupled inductive systems can be enhanced by resonance. Primary and secondary can be tuned to same resonant frequency. In this paper, MOSFET-based Varactors and switchable capacitors are used for re-tuning of such a system at 13.56 MHz. This is achieved either using each cap structure alone or as a hybrid model. These techniques are designed for 13.56 MHz wireless power transfer system.


2019 ◽  
Vol 6 (2) ◽  
pp. 175-189 ◽  
Author(s):  
Wei Chen Cheah ◽  
Simon Andrew Watson ◽  
Barry Lennox

AbstractAdvances in technology have seen mobile robots becoming a viable solution to many global challenges. A key limitation for tetherless operation, however, is the energy density of batteries. Whilst significant research is being undertaken into new battery technologies, wireless power transfer may be an alternative solution. The majority of the available technologies are not targeted toward the medium power requirements of mobile robots; they are either for low powers (a few Watts) or very large powers (kW). This paper reviews existing wireless power transfer technologies and their applications on mobile robots. The challenges of using these technologies on mobile robots include delivering the power required, system efficiency, human safety, transmission medium, and distance, all of which are analyzed for robots operating in a hazardous environment. The limitations of current wireless power technologies to meet the challenges for mobile robots are discussed and scenarios which current wireless power technologies can be used on mobile robots are presented.


2021 ◽  
Vol 35 (11) ◽  
pp. 1368-1369
Author(s):  
Jiawei Ge ◽  
Hassan Eldeeb ◽  
Kun Liu ◽  
Jinping Kang ◽  
Haisen Zhao ◽  
...  

Accurate system resistance may lead to an obvious error between the simulated and the real efficiency of the system. This paper proposes an optimal range of coupling coefficient for ensuring the efficiency and the sufficient output power of the WPT (wireless power transfer) system. A 3-kW prototype WPT system is manufactured and the effectiveness of the optimal range of coupling coefficient is validated.


Sign in / Sign up

Export Citation Format

Share Document