Improved Off-time Discrete Control for DCM Grid-tied Inverter with Accurate Average Current Model and Considering Nonlinear Parasitic Capacitance

Author(s):  
Cheng Huang ◽  
Tomoyuki Mannen ◽  
Takanori Isobe
Energies ◽  
2018 ◽  
Vol 11 (12) ◽  
pp. 3478 ◽  
Author(s):  
Xiaofeng Zhang ◽  
Run Min ◽  
Donglai Zhang ◽  
Yi Wang

This paper presents an Optimized Sensorless Charge Balance (OSCB) controller based on a damped current model for flyback converter operating in Discontinuous Conduction Mode (DCM). By solving total differential equations of non-ideal transformer currents, the damped current model is derived with consideration of parasitics, leakage inductance of transformer, and the Resistor-Capacitor-Diode (RCD) snubber circuit. Based on the proposed model, current observation and control algorithms of the Sensorless Charge Balance (SCB) controller are optimized, which forms the OSCB control strategy. The average current damping is considered in the equivalent discrete-time small signal model. Furthermore, frequency analyses show that OSCB controller achieves higher closed-loop bandwidth and lower overshoot than a SCB controller, which indicates an improved transient performance. Finally, both OSCB and conventional SCB controllers are experimentally evaluated on a flyback converter prototype.


Author(s):  
F. I. Grace ◽  
L. E. Murr

During the course of electron transmission investigations of the deformation structures associated with shock-loaded thin foil specimens of 70/30 brass, it was observed that in a number of instances preferential etching occurred along grain boundaries; and that the degree of etching appeared to depend upon the various experimental conditions prevailing during electropolishing. These included the electrolyte composition, the average current density, and the temperature in the vicinity of the specimen. In the specific case of 70/30 brass shock-loaded at pressures in the range 200-400 kilobars, the predominant mode of deformation was observed to be twin-type faults which in several cases exhibited preferential etching similar to that observed along grain boundaries. A novel feature of this particular phenomenon was that in certain cases, especially for twins located in the vicinity of the specimen edge, the etching or preferential electropolishing literally isolated these structures from the matrix.


Author(s):  
M. Shlepr ◽  
R. L. Turner

Calcification in the echinoderms occurs within a limited-volume cavity enclosed by cytoplasmic extensions of the mineral depositing cells, the sclerocytes. The current model of this process maintains that the sheath formed from these cytoplasmic extensions is syncytial. Prior studies indicate that syncytium formation might be dependent on sclerocyte density and not required for calcification. This model further envisions that ossicles formed de novo nucleate and grow intracellularly until the ossicle effectively outgrows the vacuole. Continued ossicle growth occurs within the sheath but external to the cell membrane. The initial intracellular location has been confirmed only for elements of the echinoid tooth.The regenerating aboral disc integument of ophiophragmus filograneus was used to test the current echinoderm calcification model. This tissue is free of calcite fragments, thus avoiding questions of cellular engulfment, and ossicles are formed de novo. The tissue calcification pattern was followed by light microscopy in both living and fixed preparations.


1997 ◽  
Vol 92 (3) ◽  
pp. 609-617 ◽  
Author(s):  
RICCARDO ZANASI ◽  
PAOLO LAZZERETTI

2000 ◽  
Vol 12 (1) ◽  
pp. 65-86 ◽  
Author(s):  
R. La ◽  
B. Benoist ◽  
B. de Barmon ◽  
M. Talvard ◽  
R. Lengelle ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document