Ge Ring Modulator Based on Carrier-injection Phaser Shifter Operating at Two Micrometer Band

Author(s):  
Ziqiang Zhao ◽  
Chong Pei Ho ◽  
Qiang Li ◽  
Kasidit Toprasertpong ◽  
Shinichi Takagi ◽  
...  
Author(s):  
Ashkan Seyedi ◽  
Marco Fiorentino ◽  
Ray Beausoleil

This paper presents experimental data of concurrent modulation of a multi-channel transmitter that uses carrier-injection ring modulators at 10Gb/s/channel that is optically driven by a quantum-dot comb laser with 50GHz channel spacing.


Author(s):  
M. Ashkan Seyedi ◽  
Rui Wu ◽  
Chin-Hui Chen ◽  
Marco Fiorentino ◽  
Ray G. Beausoleil

2001 ◽  
Vol 11 (PR11) ◽  
pp. Pr11-53-Pr11-57
Author(s):  
B. Vengalis ◽  
V. Plausinaitiene ◽  
A. Abrutis ◽  
Z. Saltyte ◽  
R. Butkute ◽  
...  

2000 ◽  
Vol 660 ◽  
Author(s):  
Thomas M. Brown ◽  
Ian S. Millard ◽  
David J. Lacey ◽  
Jeremy H. Burroughes ◽  
Richard H. Friend ◽  
...  

ABSTRACTThe semiconducting-polymer/injecting-electrode heterojunction plays a crucial part in the operation of organic solid state devices. In polymer light-emitting diodes (LEDs), a common fundamental structure employed is Indium-Tin-Oxide/Polymer/Al. However, in order to fabricate efficient devices, alterations to this basic structure have to be carried out. The insertion of thin layers, between the electrodes and the emitting polymer, has been shown to greatly enhance LED performance, although the physical mechanisms underlying this effect remain unclear. Here, we use electro-absorption measurements of the built-in potential to monitor shifts in the barrier height at the electrode/polymer interface. We demonstrate that the main advantage brought about by inter-layers, such as poly(ethylenedioxythiophene)/poly(styrene sulphonic acid) (PEDOT:PSS) at the anode and Ca, LiF and CsF at the cathode, is a marked reduction of the barrier to carrier injection. The electro- absorption results also correlate with the electroluminescent characteristics of the LEDs.


2001 ◽  
Vol 708 ◽  
Author(s):  
Mathew K. Mathai ◽  
Keith A. Higginson ◽  
Bing R. Hsieh ◽  
Fotios Papadimitrakopoulos

ABSTRACTIn this paper we report a method for tuning the extent of hole injection into the active light emitting tris- (8-hydroxyquinoline) aluminum (Alq3) layer in organic light emitting diodes (OLEDs). This is made possible by modifying the indium tin oxide (ITO) anode with an oxidized transport layer (OTL) comprising a hole transporting polycarbonate of N,N'-bis(3-hydroxymethyl)-N,N'-bis(phenyl) benzidine and diethylene glycol (PC-TPB-DEG) doped with varying concentrations of antimonium hexafluoride salt of N,N,N',N'-tetra-p-tolyl-4,4'-biphenyldiamine (TMTPD+ SbF6-). The conductivity of the OTL can be changed over three orders of magnitude depending on salt loading. The analysis of hole and electron current variations in these devices indicates that optimizing the conductivity of the OTL enables the modulation of hole injection into the Alq3 layer. The bipolar charge transport properties for OLEDs in which the interfacial carrier injection barriers have been minimized, are governed by the conductivities of the respective layers and in this case it is shown that the variable conductivity of the OTL does allow for better control of the same. Accordingly, varying the concentration of holes in the device indicates that beyond an optimum concentration of holes, further hole injection results in the formation of light quenching cationic species and the initiation of oxidative degradation processes in the Alq3 layer, thus accelerating the intrinsic degradation of these devices. The variable conductivity of the OTL can hence be used to minimize the occurrence of these processes.


2019 ◽  
Vol 19 (10) ◽  
pp. 6746-6749 ◽  
Author(s):  
Taejin Jang ◽  
Myung-Hyun Baek ◽  
Min-Woo Kwon ◽  
Sungmin Hwang ◽  
Jeesoo Chang ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document