Numerical Simulation on the Formation Process of Metal Droplets by Pneumatic Diaphragm Drop-on Demand Technology

Author(s):  
Kun Ma ◽  
Sheng Liu ◽  
Zhiwen Chen ◽  
Li Liu ◽  
Hao Zheng ◽  
...  
2012 ◽  
Vol 212 (3) ◽  
pp. 718-726 ◽  
Author(s):  
Jun Luo ◽  
Le-hua Qi ◽  
Ji-ming Zhou ◽  
Xiang-hui Hou ◽  
He-jun Li

2012 ◽  
Vol 538-541 ◽  
pp. 890-894 ◽  
Author(s):  
Peng Yun Wang ◽  
He Jun Li ◽  
Le Hua Qi ◽  
Hai Liang Deng ◽  
Han Song Zuo

Droplet deposition and solidification is vital to dimensional accuracy and mechanical properties of components prepared by uniform droplet spray (UDS) forming. In this paper, a volume-of-fluid (VOF) based model was developed to study the deposition and solidification processes of a 1 mm Al-4.5%Cu droplet generated by drop-on-demand jetting. The effects of droplet falling velocity (0.6-0.8 m/s), initial temperature (933-973 K), and substrate temperature (300-473 K) were investigated. The results show that the final morphology of the deposited droplet is largely dependent on falling velocity and substrate temperature. The solidified droplet obtained from an UDS experiment validates the numerical simulation.


Langmuir ◽  
2014 ◽  
Vol 30 (30) ◽  
pp. 9130-9138 ◽  
Author(s):  
Changxue Xu ◽  
Meng Zhang ◽  
Yong Huang ◽  
Amod Ogale ◽  
Jianzhong Fu ◽  
...  

Author(s):  
Markus Kagerer ◽  
Arne Meeuw ◽  
Jan Berger ◽  
Dominik Rumschoettel ◽  
Tim C. Lueth ◽  
...  

Dispensing minute amounts of fluid is used in many industries, such as in life science, bioengineering, 3D printing, or in electronics manufacturing. Each application for drop-on-demand (DoD) printheads requires different drop volumes and drop velocities. Furthermore, it is necessary to eject droplets made of fluids with different fluid properties, like viscosity, surface tension, or density. Due to this wide range of different applications and demands on printheads it is important to investigate the influence of relevant factors on the droplet formation process. Therefore, the influence of the fluid properties, the printhead geometry, and the electrical excitation form on the droplet formation process are described in this project. In detail, the influence of the surface tension as well as the viscosity of the fluid, the nozzle length and its width, and the amplitude of the applied voltage at different pulse widths on the droplet characteristics are investigated. The used printhead consists of a silicon chip, which includes the fluidic components, and of a bimorph piezoelectric actuator. The printhead is manufactured with rapid manufacturing techniques, such as laser micromachining. The advantage of this method is that the printhead is adaptable to new boundary conditions in a time- and cost-saving manner. In this project, the nozzles have a square shape with a sidelength between 50 and 100 μm and the nozzle length varies between 50 and 200 μm. A fluid mixture is provided which can be varied in its fluid properties. Therefore, the possibility for the independent adjustment of its viscosity and its surface tension is given. The mixture consists of glycerin, distilled water, and isopropanol. An analytical description for each amount of its substances enables to provide a fluid with defined properties. Three kinds of experiments are carried out in order to determine the influence of the fluid properties, the printhead geometry, and the electrical excitation on the droplet formation process. The determination of the minimum excitation voltage needed for droplet ejection and the determination of the droplet volume and its velocity. The main results are: The higher the surface tension, viscosity, and nozzle length, the higher is the minimum excitation voltage. Furthermore, the droplet velocity decreases for an increased surface tension, viscosity, and nozzle length. On the other hand, the droplet velocity increases with an enlarged amplitude of the voltage and pulse width. The droplet volume increases for an increased surface tension, nozzle width, pulse width, and amplitude of the voltage. In general, the reasons for these correlations are the interaction between the strength of the pressure pulse, friction forces, fluidic resistances, and fluid properties. Overall, the possibility to achieve microdroplets made of different fluids and with a specific velocity and volume is described. Furthermore, a fluid mixture, which can be varied in its fluid properties, is presented.


Volume 1 ◽  
2004 ◽  
Author(s):  
Rajeev Dhiman ◽  
Sanjeev Chandra

The effect of substrate temperature on the splashing of molten metal droplets was studied experimentally. Uniform-size molten tin droplets (550 μm diameter) were produced using a drop-on-demand generator. To achieve high impact velocities substrates were mounted on the rim of a rotating flywheel and heated using cartridge heaters to vary substrate temperature. Droplets hitting a smooth cold substrate splashed extensively producing many small satellite droplets and leaving on the surface a small, irregular splat with many fingers projecting from its periphery. Droplets hitting a hot substrate did not splash but spread out to form a smooth disc. A new splashing criterion was developed to calculate the substrate temperature at which this transition occurred. It assumes splashing to occur when the solid layer produced as a result of droplet solidification grows equal to the splat thickness and obstructs the spreading liquid.


Author(s):  
Shinichiro ONDA ◽  
Ryoya INABA ◽  
Takashi HOSODA

Sign in / Sign up

Export Citation Format

Share Document