Effect of Substrate Temperature on Splashing of Molten Metal Droplets
The effect of substrate temperature on the splashing of molten metal droplets was studied experimentally. Uniform-size molten tin droplets (550 μm diameter) were produced using a drop-on-demand generator. To achieve high impact velocities substrates were mounted on the rim of a rotating flywheel and heated using cartridge heaters to vary substrate temperature. Droplets hitting a smooth cold substrate splashed extensively producing many small satellite droplets and leaving on the surface a small, irregular splat with many fingers projecting from its periphery. Droplets hitting a hot substrate did not splash but spread out to form a smooth disc. A new splashing criterion was developed to calculate the substrate temperature at which this transition occurred. It assumes splashing to occur when the solid layer produced as a result of droplet solidification grows equal to the splat thickness and obstructs the spreading liquid.