CPT atomic clock based on an antirelaxation-coated cell and quadrature-signal method of the light shift cancellation

Author(s):  
S. M. Ignatovich ◽  
V. I. Vishnyakov ◽  
A. O. Makarov ◽  
M. N. Skvortsov ◽  
N. L. Kvashnin ◽  
...  
2020 ◽  
Vol 14 (3) ◽  
Author(s):  
M. Abdel Hafiz ◽  
R. Vicarini ◽  
N. Passilly ◽  
C.E. Calosso ◽  
V. Maurice ◽  
...  

2017 ◽  
Vol 50 (4) ◽  
pp. 227-231 ◽  
Author(s):  
Yi Yin ◽  
Yuan Tian ◽  
Yuan-Chao Wang ◽  
Si-Hong Gu

2015 ◽  
Vol 32 (3) ◽  
pp. 388 ◽  
Author(s):  
G. S. Pati ◽  
Z. Warren ◽  
N. Yu ◽  
M. S. Shahriar

2018 ◽  
Vol 89 (6) ◽  
pp. 066101 ◽  
Author(s):  
Haixiao Lin ◽  
Jianliao Deng ◽  
Jinda Lin ◽  
Song Zhang ◽  
Yao Hu ◽  
...  

Universe ◽  
2020 ◽  
Vol 7 (1) ◽  
pp. 3
Author(s):  
Alexey Baranov ◽  
Sergey Ermak ◽  
Roman Lozov ◽  
Vladimir Semenov

The article presents the results of an experimental study of the external magnetic field orientation and magnitude influence on the rubidium atomic clock, simulating the influence of the geomagnetic field on the onboard rubidium atomic clock of navigation satellites. The tensor component value of the atomic clock frequency light shift on the rubidium cell was obtained, and this value was ~2 Hz. The comparability of the relative light shift (~10−9) and the regular gravitational correction (4×10−10) to the frequency of the rubidium atomic clock was shown. The experimental results to determine the orientational shift influence on the rubidium atomic clock frequency were presented. A significant effect on the relative frequency instability of a rubidium atomic clock at a level of 10−12(10−13) for rotating external magnetic field amplitudes of 1.5 A/m and 3 A/m was demonstrated. This magnitude corresponds to the geomagnetic field in the orbit of navigation satellites. The necessity of taking into account various factors (satellite orbit parameters and atomic clock characteristics) is substantiated for correct comparison of corrections to the rubidium onboard atomic clock frequency associated with the Earth’s gravitational field action and the satellite orientation in the geomagnetic field.


Sign in / Sign up

Export Citation Format

Share Document