tensor component
Recently Published Documents


TOTAL DOCUMENTS

56
(FIVE YEARS 16)

H-INDEX

10
(FIVE YEARS 2)

2022 ◽  
Vol 12 (1) ◽  
Author(s):  
Gianfranco Ulian ◽  
Giovanni Valdrè

AbstractCalcite (CaCO3, trigonal crystal system, space group $$R\overline{3}c$$ R 3 ¯ c ) is a ubiquitous carbonate phase commonly found on the Earth’s crust that finds many useful applications in both scientific (mineralogy, petrology, geology) and technological fields (optics, sensors, materials technology) because of its peculiar anisotropic physical properties. Among them, photoelasticity, i.e., the variation of the optical properties of the mineral (including birefringence) with the applied stress, could find usefulness in determining the stress state of a rock sample containing calcite by employing simple optical measurements. However, the photoelastic tensor is not easily available from experiments, and affected by high uncertainties. Here we present a theoretical Density Functional Theory approach to obtain both elastic and photoelastic properties of calcite, considering realistic experimental conditions (298 K, 1 atm). The results were compared with those available in literature, further extending the knowledge of the photoelasticity of calcite, and clarifying an experimental discrepancy in the sign of the p41 photoelastic tensor component measured in past investigations. The methods here described and applied to a well-known crystalline material can be used to obtain the photoelastic properties of other minerals and/or materials at desired pressure and temperature conditions.


2021 ◽  
Vol 54 (6) ◽  
Author(s):  
Mykola Shopa ◽  
Nazar Ftomyn ◽  
Yaroslav Shopa

A high-accuracy polarimetric technique has been used for the characterization of a lead germanate ferroelectric single crystal. The measurement results of the linear and circular birefringence in the [010] direction at a wavelength of 633 nm under the influence of an electric field are presented. Gyration–electric field hysteresis loops at alternative crystal positions in the polarization system have been used to determine the ellipticity of the eigenwaves. A temperature dependence of the gyration tensor component g 11 in the temperature range of 300–450 K was found.


2021 ◽  
pp. 133-162
Author(s):  
Yipeng Liu ◽  
Jiani Liu ◽  
Zhen Long ◽  
Ce Zhu

2021 ◽  
Author(s):  
Guoqiang Hu ◽  
Huanjie Li ◽  
Wei Zhao ◽  
Yuxing Hao ◽  
Zonglei Bai ◽  
...  

AbstractThe study of brain network interactions during naturalistic stimuli facilitates a deeper understanding of human brain function. Intersubject correlation (ISC) analysis of functional magnetic resonance imaging (fMRI) data is a widely used method that can measure neural responses to naturalistic stimuli that are consistent across subjects. However, interdependent correlation values in ISC artificially inflated the degrees of freedom, which hinders the investigation of individual differences. Besides, the existing ISC model mainly focus on similarities between subjects but fails to distinguish neural responses to different stimuli features. To estimate large-scale brain networks evoked with naturalistic stimuli, we propose a novel analytic framework to characterize shared spatio-temporal patterns across subjects in a purely data-driven manner. In the framework, a third-order tensor is constructed from the timeseries extracted from all brain regions from a given parcellation, for all participants, with modes of the tensor corresponding to spatial distribution, time series and participants. Tensor component analysis (TCA) will then reveal spatially and temporally shared components, i.e., naturalistic stimuli evoked networks, their temporal courses of activity and subject loadings of each component. To enhance the reproducibility of the estimation with TCA, a novel spectral clustering method, tensor spectral clustering, was proposed and applied to evaluate the stability of TCA algorithm. We demonstrate the effectiveness of the proposed framework via simulations and real fMRI data collected during a motor task with a traditional fMRI study design. We also apply the proposed framework to fMRI data collected during passive movie watching to illustrate how reproducible brain networks are identified evoked by naturalistic movie viewing.


Universe ◽  
2020 ◽  
Vol 7 (1) ◽  
pp. 3
Author(s):  
Alexey Baranov ◽  
Sergey Ermak ◽  
Roman Lozov ◽  
Vladimir Semenov

The article presents the results of an experimental study of the external magnetic field orientation and magnitude influence on the rubidium atomic clock, simulating the influence of the geomagnetic field on the onboard rubidium atomic clock of navigation satellites. The tensor component value of the atomic clock frequency light shift on the rubidium cell was obtained, and this value was ~2 Hz. The comparability of the relative light shift (~10−9) and the regular gravitational correction (4×10−10) to the frequency of the rubidium atomic clock was shown. The experimental results to determine the orientational shift influence on the rubidium atomic clock frequency were presented. A significant effect on the relative frequency instability of a rubidium atomic clock at a level of 10−12(10−13) for rotating external magnetic field amplitudes of 1.5 A/m and 3 A/m was demonstrated. This magnitude corresponds to the geomagnetic field in the orbit of navigation satellites. The necessity of taking into account various factors (satellite orbit parameters and atomic clock characteristics) is substantiated for correct comparison of corrections to the rubidium onboard atomic clock frequency associated with the Earth’s gravitational field action and the satellite orientation in the geomagnetic field.


Polymers ◽  
2020 ◽  
Vol 12 (10) ◽  
pp. 2274
Author(s):  
Chao-Tsai Huang ◽  
Cheng-Hong Lai

Glass or carbon fibers have been verified that can enhance the mechanical properties of the polymeric composite injection molding parts due to their orientation distribution. However, the interaction between flow and fiber is still not fully understood yet, especially for the flow–fiber coupling effect. In this study, we have tried to investigate the flow–fiber coupling effect on fiber reinforced plastics (FRP) injection parts utilizing a more complicated geometry system with three ASTM D638 specimens. The study methods include both numerical simulation and experimental observation. Results showed that in the presence of flow–fiber coupling effect, the melt flow front advancement presents some variation, specifically the “convex-flat-flat” pattern will change to a “convex-flat-concave” pattern. Furthermore, through the fiber orientation distribution (FOD) study, the flow–fiber coupling effect is not significant at the near gate region (RG). It might result from the strong shear force to repress the appearance of the flow–fiber interaction. However, at the end of filling region (ER), the flow–fiber coupling effect tries to diminish the flow direction orientation tensor component A11 and enhance the cross-flow orientation tensor component A22 simultaneously. It results in the dominance in the cross-flow direction at the ER. This orientation distribution behavior variation has been verified using a micro-computerized tomography (micro-CT) scan and image analysis technology.


2020 ◽  
Vol 33 (6) ◽  
pp. 677-692
Author(s):  
Jia Liu ◽  
Yongjie Zhu ◽  
Hongjin Sun ◽  
Tapani Ristaniemi ◽  
Fengyu Cong

Abstract Sustained attention encompasses a cascade of fundamental functions. The human ability to implement a sustained attention task is supported by brain networks that dynamically formed and dissolved through oscillatory synchronization. The decrement of vigilance induced by prolonged task engagement affects sustained attention. However, little is known about which stage or combinations are affected by vigilance decrement. Here, we applied an analysis framework composed of weighted phase lag index (wPLI) and tensor component analysis (TCA) to an EEG dataset collected during 80 min sustained attention task to examine the electrophysiological basis of such effect. We aimed to characterize the phase-coupling networks to untangle different phases involved in sustained attention and study how they are modulated by vigilance decrement. We computed the time–frequency domain wPLI from each block and subject and constructed a fourth-order tensor, containing the time, frequency, functional connectivity (FC), and blocks × subjects. This tensor was subjected to the TCA to identify the interacted and low-dimensional components representing the frequency-specific dynamic FC (fdFC). We extracted four types of neuromakers during a sustained attention task, namely the pre-stimulus alpha right-lateralized parieto-occipital FC, the post-stimulus theta fronto-parieto-occipital FC, delta fronto-parieto-occipital FC, and beta right/left sensorimotor FCs. All these fdFCs were impaired by vigilance decrement. These fdFCs, except for the beta left sensorimotor network, were restored by rewards, although the restoration by reward in the beta right sensorimotor network was transient. These findings provide implications for dissociable effects of vigilance decrement on sustained attention by utilizing the tensor-based framework.


Sign in / Sign up

Export Citation Format

Share Document