Novel topology of combined AC-DC distribution network interconnected with renewable energy

Author(s):  
Qing Zhang ◽  
Yurong Wei ◽  
Xiaoxue Rong ◽  
Mengqi Liu ◽  
Aihui Yin ◽  
...  
2014 ◽  
Vol 960-961 ◽  
pp. 676-679
Author(s):  
Dong Xin Hao ◽  
Li Zhang ◽  
Meng Qi Liu ◽  
Pan Ting Dong ◽  
Hao Wu

The combined AC+DC distribution network in this study provides a coupling and decoupling strategy of renewable energy in DC mode by using zig-zag transformer, which makes each line transmit AC electrical power and DC power simultaneously. The proposed scheme is digitally simulated with the help of Simulink software package. Simulation results indicate lower line voltage drop and less active and reactive power loss in steady state; almost similar or even better transient effects in transient state, which demonstrates the feasibility of combined AC+DC distribution network of single line interconnected with renewable energy.


Energies ◽  
2019 ◽  
Vol 12 (24) ◽  
pp. 4621 ◽  
Author(s):  
Yi Liu ◽  
Zhanqing Yu ◽  
Haibo Li ◽  
Rong Zeng

DC distribution networks are operationally economical from the perspective of renewable energy penetration due to the reduction of power loss from the simplified power conversion structure. However, the initial investment cost of a DC network is high because DC technology is in the early stage of development. So, selecting AC or DC technology becomes an important issue in the planning stage of a distribution network, where a comprehensive quantitative economic comparison between AC and DC distribution networks is necessary. To compare the economy between AC and DC distribution networks with high penetration of a renewable energy scenario, this paper introduces a comprehensive economic evaluation method. In this study, first, typical system models for AC and DC distribution networks were proposed as the foundation of the research. Then, a levelized cost of energy (LCOE)-indicator-based comprehensive economic evaluation model was established, where the operation cost was classified into power loss cost, reliability loss cost, and operational cost. A time sequential simulation model was applied to calculate the power loss. The simulation results showed that a DC distribution network has higher initial investment, operation, and maintenance costs than an AC distribution network, but the loss cost is far lower than an AC distribution network. A sensitivity analysis showed that the equipment cost and proportion of renewable energy are two of the most important factors that affect the economics of DC distribution networks at present.


2014 ◽  
Vol 960-961 ◽  
pp. 680-683
Author(s):  
Meng Qi Liu ◽  
Li Zhang ◽  
Jie Lou ◽  
Liang Zou ◽  
Tong Zhao

With the rapid development of smart grids, the interconnection between the grid and distributed renewable energy is the inevitable trend of future study. Because of the existence of the DC source in the combined AC-DC distribution network, the transformer iron core is easily saturated generating lots of harmonics and increasing the loss of the transformer. This paper presents a novel method based on inductive filtering technology of core saturation suppression of the transformer in the combined AC-DC distribution network, this novel method can suppress the harmonics caused by the flux saturation and forbid the harmonics intruding into the ac grid. In the end we build the simulation model to prove the correctness and practicability of this novel method.


Sign in / Sign up

Export Citation Format

Share Document