Author(s):  
Silvio Baier ◽  
Ulrich Rohde ◽  
Soeren Kliem ◽  
Emil Fridman

The reactor dynamics code DYN3D was extended to treat phenomena in Block-type High Temperature Reactors (HTR). Therefor, a new heat conduction model was implemented into the code to tackle 3D effects of heat conduction and heat transfer. The first part of the paper describes the details of the heat conduction model. In the second part results of coupled neutron-kinetics/thermal-hydraulics calculations of steady state and short-time transients in block-type HTRs are discussed.


2021 ◽  
Author(s):  
Jincheng Wang ◽  
Ming Ding

Abstract Pebble bed very high temperature reactor (VHTR) has been identified as one of six Generation-IV (Gen-IV) types of reactor which could operate at a high thermal power. The calculation of the temperature in the fuel pebble is a key part of VHTR thermal hydraulics numerical simulation. However, due to the special structure of the VHTR fuel pebble, the temperature calculation involves a multiscale problem. The multiscale heat conduction model includes mesoscale temperature of fuel pebble and microscale temperature of TRISO fuel particles calculation. To deal with the particularity of temperature calculation of the fuel pebble, this paper presents a multiscale heat conduction model based on an open source CFD package OpenFOAM. Firstly, the quasi steady state heat conduction method (QSSHC) and homogeneous layers method (HL) was verified by a simple multiscale model. The results show that the QSSHC method has a good ability of multiscale temperature prediction. Secondly, the mesoscale temperature distribution and the maximum temperature in the microscale of VHTR fuel pebbled are calculated with QSSHC method based on OpenFOAM. This multiscale solver will be couple with other solvers of OpenFOAM, to provide a new perspective of VHTR simulation.


Sign in / Sign up

Export Citation Format

Share Document