Survey on Asymmetric Cryptography Algorithms

Author(s):  
Yifan Shen ◽  
Zhaochun Sun ◽  
Tian Zhou
2018 ◽  
Vol 7 (3.4) ◽  
pp. 34
Author(s):  
Leela K ◽  
Smitha Vinod

Security is a major concern when it comes to electronic data transfer. Digital signature uses hash function and asymmetric algorithms to uniquely identify the sender of the data and it also ensures integrity of the data transferred. Hybrid encryption uses both symmetric and asymmetric cryptography to enhance the security of the data. Digital Signature is used to identify the owner of the document but it does not hide the information while transferring the document. Anyone can read the message. To avoid this, data sent along with the signature should be secured. In this paper, Digital signature is combined with hybrid encryption to enhance the security level. Security of the data or the document sent is achieved by using hybrid encryption technique along with digital signature. 


Radiotekhnika ◽  
2021 ◽  
pp. 106-114
Author(s):  
Y. Kotukh ◽  
T. Okhrimenko ◽  
O. Dyachenko ◽  
N. Rotaneva ◽  
L. Kozina ◽  
...  

Rapid development and advances of quantum computers are contributing to the development of public key cryptosystems based on mathematically complex or difficult problems, as the threat of using quantum algorithms to hack modern traditional cryptosystems is becoming much more real every day. It should be noted that the classical mathematically complex problems of factorization of integers and discrete logarithms are no longer considered complex for quantum calculations. Dozens of cryptosystems were considered and proposed on various complex problems of group theory in the 2000s. One of such complex problems is the problem of the word. One of the first implementations of the cryptosystem based on the word problem was proposed by Magliveras using logarithmic signatures for finite permutation groups and further proposed by Lempken et al. for asymmetric cryptography with random covers. The innovation of this idea is to extend the difficult problem of the word to a large number of groups. The article summarizes the known results of cryptanalysis of the basic structures of the cryptosystem and defines recommendations for ways to improve the cryptographic properties of structures and the use of non-commutative groups as basic structures.


2013 ◽  
Vol 21 (11) ◽  
pp. 1965-1974 ◽  
Author(s):  
Thomas Plos ◽  
Michael Hutter ◽  
Martin Feldhofer ◽  
Maksimiljan Stiglic ◽  
Francesco Cavaliere

2019 ◽  
Vol 2019 ◽  
pp. 1-10
Author(s):  
Édgar Salguero Dorokhin ◽  
Walter Fuertes ◽  
Edison Lascano

When establishing a cryptographic key between two users, the asymmetric cryptography scheme is generally used to send it through an insecure channel. However, given that the algorithms that use this scheme, such as RSA, have already been compromised, it is imperative to research for new methods of establishing a cryptographic key that provide security when they are sent. To solve this problem, a new branch known as neural cryptography was born, using a modified artificial neural network called Tree Parity Machine or TPM. Its purpose is to establish a private key through an insecure channel. This article proposes the analysis of an optimal structure of a TPM network that allows generating and establishing a private cryptographic key of 512-bit length between two authorized parties. To achieve this, the combinations that make possible to generate a key of that length were determined. In more than 15 million simulations that were executed, we measured synchronization times, the number of steps required, and the number of times in which an attacking TPM network manages to imitate the behaviour of the two networks. The simulations resulted in the optimal combination, minimizing the synchronization time and prioritizing security against the attacking network. Finally, the model was validated by applying a heuristic rule.


Sign in / Sign up

Export Citation Format

Share Document