asymmetric cryptography
Recently Published Documents


TOTAL DOCUMENTS

112
(FIVE YEARS 49)

H-INDEX

10
(FIVE YEARS 2)

Author(s):  
Petro Klimushyn ◽  
Tetiana Solianyk ◽  
Oleksandr Mozhaev ◽  
Vitalii Nosov ◽  
Tetiana Kolisnyk ◽  
...  

Subject of research: procedures of asymmetric authentication of Internet of Things nodes to ensure the highest level of security using cryptographic chips. The aim of the article is to study the ways of potential use of cryptographic chips to ensure secure authentication of Internet of Things sites using asymmetric cryptography procedures. The article solves the following tasks: analysis of hardware support technologies for asymmetric cryptography of the Internet of Things; definition of secure procedures for asymmetric authentication of Internet of Things sites and their constituent elements: creation of certificates, verification of public and private keys. Research methods: method of structural and functional analysis and design of complex systems, methods of identification and authentication of information objects, cryptographic methods of information protection, methods of security analysis of distributed information systems. The novelty of the study is the analysis of hardware support technologies for asymmetric cryptography of Internet of Things with cryptographic chips and the definition of structural and functional schemes for the implementation of procedures for asymmetric authentication of Internet of Things. Distinctive features of the provided asymmetric authentication schemes and procedures are: ensuring an increased level of information security through secure storage of cryptographic keys, digital signatures, certificates, confidential data in a novelty security environment protected from external attacks and no need to store private keys on the host side. The results of the work are procedures and schemes of application of cryptomicrops of asymmetric authentication to ensure the protection of Internet of Things. Analysis of the functioning of the presented schemes allowed to draw the following conclusions. The proposed structural and functional schemes for the implementation of procedures for asymmetric authentication of Internet of Things using cryptographic chips give the user an easy opportunity to implement cryptography without expertise in this field. These chips use the ECDSA digital signature computing and verification hardware with elliptical curve advantages, as a proven and reliable authentication algorithm, and the ECDH symmetric encryption session key generation unit. The provided schemes and procedures support three components of information security, namely: confidentiality, integrity and authenticity of data. Examples of potential applications of the provided schemes and procedures can be implemented using any asymmetric authentication chip, but it is recommended that they be used to generate encryption session keys and where digital signatures are required to verify data and code for integrity and authenticity.


2021 ◽  
Vol 17 (4) ◽  
pp. 85-97
Author(s):  
Fakhreddin F. Rad

This study conceptually investigates the impact of quantum computers on blockchains within the supply chain context. Powerful quantum computers enable attackers to break into blockchains by rapid inverse calculations of mathematical problems that are the core of one of the main blockchain security foundations, known as asymmetric cryptography. They are also able to violate the integrity of public blockchains like bitcoin through mining acceleration. Hence, quantum computers can engender threats to the supply chain users of blockchain. On the other hand, there are ongoing efforts to create a quantum-resistant solution. One approach for such a solution is to utilize quantum tools themselves. Moreover, sufficiently powerful quantum computers are still being developed, and it is still unclear whether a quantum solution will arrive first or vice versa. The contrasting duality of quantum computers and lack of a clear picture over the timing of the arrival of a solution and threats give rise to the uncertainty that might hinder the attractiveness of blockchains for supply chains.


Radiotekhnika ◽  
2021 ◽  
pp. 106-114
Author(s):  
Y. Kotukh ◽  
T. Okhrimenko ◽  
O. Dyachenko ◽  
N. Rotaneva ◽  
L. Kozina ◽  
...  

Rapid development and advances of quantum computers are contributing to the development of public key cryptosystems based on mathematically complex or difficult problems, as the threat of using quantum algorithms to hack modern traditional cryptosystems is becoming much more real every day. It should be noted that the classical mathematically complex problems of factorization of integers and discrete logarithms are no longer considered complex for quantum calculations. Dozens of cryptosystems were considered and proposed on various complex problems of group theory in the 2000s. One of such complex problems is the problem of the word. One of the first implementations of the cryptosystem based on the word problem was proposed by Magliveras using logarithmic signatures for finite permutation groups and further proposed by Lempken et al. for asymmetric cryptography with random covers. The innovation of this idea is to extend the difficult problem of the word to a large number of groups. The article summarizes the known results of cryptanalysis of the basic structures of the cryptosystem and defines recommendations for ways to improve the cryptographic properties of structures and the use of non-commutative groups as basic structures.


2021 ◽  
Author(s):  
Yifan Shen ◽  
Zhaochun Sun ◽  
Tian Zhou

Electronics ◽  
2021 ◽  
Vol 10 (12) ◽  
pp. 1490
Author(s):  
Asher Sajid ◽  
Muhammad Rashid ◽  
Sajjad Shaukat Jamal ◽  
Malik Imran ◽  
Saud S. Alotaibi ◽  
...  

Elliptic curve cryptography is the most widely employed class of asymmetric cryptography algorithm. However, it is exposed to simple power analysis attacks due to the lack of unifiedness over point doubling and addition operations. The unified crypto systems such as Binary Edward, Hessian and Huff curves provide resistance against power analysis attacks. Furthermore, Huff curves are more secure than Edward and Hessian curves but require more computational resources. Therefore, this article has provided a low area hardware architecture for point multiplication computation of Binary Huff curves over GF(2163) and GF(2233). To achieve this, a segmented least significant digit multiplier for polynomial multiplications is proposed. In order to provide a realistic and reasonable comparison with state of the art solutions, the proposed architecture is modeled in Verilog and synthesized for different field programmable gate arrays. For Virtex-4, Virtex-5, Virtex-6, and Virtex-7 devices, the utilized hardware resources in terms of hardware slices over GF(2163) are 5302, 2412, 2982 and 3508, respectively. The corresponding achieved values over GF(2233) are 11,557, 10,065, 4370 and 4261, respectively. The reported low area values provide the acceptability of this work in area-constrained applications.


Author(s):  
Amine Rahmani

Cryptography is one of the most used techniques to secure data since antiquity. It has been largely improved by introducing several mathematical concepts. This paper proposes a new asymmetric cryptography approach using combined Arnold's cat map with hyperbolic function and Chebyshev chaotic map for audio and image encryption. The proposed scheme uses Chebyshev map for public and secrete keys generation and the same equation with Arnold's cat map for encryption and decryption. Hyperbolic functions are also introduced replacing regular integer values in Arnold's map. The results show a good and promising efficiency as well as the theoretical discussion. Several future possible improvements are presented in the conclusion.


Author(s):  
N. Rajender Reddy ◽  
Ch. Aravind Kumar ◽  
P. Rajkumar ◽  
Venkateshwarlu Velde

Author(s):  
P. Kumaraswamy ◽  
V. Janaki ◽  
K. Srinivas ◽  
D. Naveen kumar

Sign in / Sign up

Export Citation Format

Share Document