Research on Control Strategy of General Control Load System for Sport Aircraft Simulator

Author(s):  
Hongyu Liu ◽  
Feng Tian
2020 ◽  
Vol 534 ◽  
pp. 139-153
Author(s):  
Zixin Huang ◽  
Xuzhi Lai ◽  
Pan Zhang ◽  
Qingxin Meng ◽  
Min Wu

2020 ◽  
Vol 2020 ◽  
pp. 1-16
Author(s):  
Li-li Zhang ◽  
Qi Zhao ◽  
Li Wang ◽  
Ling-yu Zhang

In this paper, we present a traffic cyber physical system for urban road traffic signal control, which is referred to as UTSC-CPS. With this proposed system, managers and researchers can realize the construction and simulation of various types of traffic scenarios, the rapid development, and optimization of new control strategies and can apply effective control strategies to actual traffic management. The advantages of this new system include the following. Firstly, the fusion architecture of private cloud computing and edge computing is proposed for the first time, which effectively improves the performance of software and hardware of the urban road traffic signal control system and realizes information security perception and protection in cloud and equipment, respectively, within the fusion framework; secondly, using the concept of parallel system, the depth of real-time traffic control subsystem and real-time simulation subsystem is realized. Thirdly, the idea of virtual scene basic engine and strategy agent engine is put forward in the system design, which separates data from control strategy by designing a general control strategy API and helps researchers focus on control algorithm itself without paying attention to detection data and basic data. Finally, considering China, the system designs a general control strategy API to separate data from control strategy. Most of the popular communication protocols between signal controllers and detectors are private protocols. The standard protocol conversion middleware is skillfully designed, which decouples the field equipment from the system software and achieves the universality and reliability of the control strategy. To further demonstrate the advantages of the new system, we have carried out a one-year practical test in Weifang City, Shandong Province, China. The system has been proved in terms of stability, security, scalability, practicability and rapid practice, and verification of the new control strategy. At the same time, it proves the superiority of the simulation subsystem in the performance and simulation scale by comparing the different-scale road networks of Shunyi District in Beijing and Weifang City in Shandong Province. Further tests were conducted using real intersections, and the results were equally valid.


2019 ◽  
Vol 2019 ◽  
pp. 1-10
Author(s):  
Yanbo Che ◽  
Zheng Li ◽  
Wei He ◽  
Yuancheng Zhao ◽  
Ruiping Zhang

As typical thermostatically controlled loads (TCL) driven by constant-speed compressor, constant-speed air-conditioners play important roles in demand-side response for their abilities of energy conversion and storage. Their great potential for load regulation can be incorporated into power system scheduling through demand response. In view of their operating characteristics, a virtual energy storage (VES) model of thermostatically controlled loads with electrical and thermal parameters is established. This model is discretized and linearized to simplify calculation. By analyzing the control function and constraints of the VES model, the control strategy of VES of constant-speed air-conditioners load with virtual charging state priority is proposed. Example analysis shows that this strategy can solve and alleviate power shortage problem of the system by participating in demand response, which provides methodological support for constant-speed compressor temperature-control load to participate in the system operation.


Sign in / Sign up

Export Citation Format

Share Document