Review of power system linearization methods and a decoupled linear equivalent power flow model

Author(s):  
Dongli Yu ◽  
Jun Cao ◽  
Xiaoyong Li
2013 ◽  
Vol 385-386 ◽  
pp. 1117-1121
Author(s):  
Lin Chuan Li ◽  
Kun Wang

Large-scale wind power connected to the power system is a challenge to the traditional dispatch mode which is based on the accuracy of load forecasting and the accessibility of power, how to deal with the randomness and volatility of wind power has become a new problem facing the dispatch of power system. In this paper, an optimal power flow model with the goal of minimizing the total generation cost is established under the environment of generation market. Consider a variety of power supply in the system, the hydro and wind power should be preferentially used; Thermal power units bid for the capacity which is determined when wind power reach its maximum output at the minimum equivalent load time, and then whether the booting units can satisfy the load is checked at the maximum equivalent load time, if not, wind power will be curtailed to boot new thermal units until the load is met. Finally the example shows the feasibility of the dispatching strategies.


Energies ◽  
2020 ◽  
Vol 13 (13) ◽  
pp. 3308
Author(s):  
Xingpeng Li

Though the full AC power flow model can accurately represent the physical power system, the use of this model is limited in practice due to the computational complexity associated with its non-linear and non-convexity characteristics. For instance, the AC power flow model is not incorporated in the unit commitment model for practical power systems. Instead, an alternative linearized DC power flow model is widely used in today’s power system operational and planning tools. However, DC power flow model will be useless when reactive power and voltage magnitude are of concern. Therefore, a linearized AC (LAC) power flow model is needed to address this issue. This paper first introduces a traditional LAC model and then proposes an enhanced data-driven linearized AC (DLAC) model using the regression analysis technique. Numerical simulations conducted on the Tennessee Valley Authority (TVA) system demonstrate the performance and effectiveness of the proposed DLAC model.


2018 ◽  
Vol 9 (5) ◽  
pp. 4828-4837 ◽  
Author(s):  
Jianqiang Miao ◽  
Ning Zhang ◽  
Chongqing Kang ◽  
Jianxiao Wang ◽  
Yi Wang ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document