scholarly journals The advancement of an obstacle avoidance bayesian neural network for an intelligent wheelchair

Author(s):  
Anh V. Nguyen ◽  
Lien B. Nguyen ◽  
Steven Su ◽  
Hung T. Nguyen
Author(s):  
Toshihiko Yasuda ◽  
◽  
Hajime Tanaka ◽  
Kazushi Nakamura ◽  
Katsuyuki Tanaka ◽  
...  

We have been studying electrically powered wheelchair operation to make electrically powered wheelchair intelligent and to develop a mobility aid for those who find it difficult or impossible to use conventional electrically powered wheelchairs. Some of the prototypes we have developed use neural networks providing obstacle avoidance. In previous research, we found that by varying neural network connection weight based on obstacles in the wheelchair’s vicinity and its run state, obstacle avoidance is improved. In this research, we discuss the adjustability of neural networks with variant connection weight based on numerical studies.


2021 ◽  
pp. 100079
Author(s):  
Vincent Fortuin ◽  
Adrià Garriga-Alonso ◽  
Mark van der Wilk ◽  
Laurence Aitchison

Author(s):  
GERALDO BRAZ JUNIOR ◽  
LEONARDO DE OLIVEIRA MARTINS ◽  
ARISTÓFANES CORREA SILVA ◽  
ANSELMO CARDOSO PAIVA

Female breast cancer is a major cause of deaths in occidental countries. Computer-aided Detection (CAD) systems can aid radiologists to increase diagnostic accuracy. In this work, we present a comparison between two classifiers applied to the separation of normal and abnormal breast tissues from mammograms. The purpose of the comparison is to select the best prediction technique to be part of a CAD system. Each region of interest is classified through a Support Vector Machine (SVM) and a Bayesian Neural Network (BNN) as normal or abnormal region. SVM is a machine-learning method, based on the principle of structural risk minimization, which shows good performance when applied to data outside the training set. A Bayesian Neural Network is a classifier that joins traditional neural networks theory and Bayesian inference. We use a set of measures obtained by the application of the semivariogram, semimadogram, covariogram, and correlogram functions to the characterization of breast tissue as normal or abnormal. The results show that SVM presents best performance for the classification of breast tissues in mammographic images. The tests indicate that SVM has more generalization power than the BNN classifier. BNN has a sensibility of 76.19% and a specificity of 79.31%, while SVM presents a sensibility of 74.07% and a specificity of 98.77%. The accuracy rate for tests is 78.70% and 92.59% for BNN and SVM, respectively.


Sign in / Sign up

Export Citation Format

Share Document