Decoding the non-stationary neuron spike trains by dual Monte Carlo point process estimation in motor Brain Machine Interfaces

Author(s):  
Yuxi Liao ◽  
Hongbao Li ◽  
Qiaosheng Zhang ◽  
Gong Fan ◽  
Yiwen Wang ◽  
...  
2009 ◽  
Vol 21 (10) ◽  
pp. 2894-2930 ◽  
Author(s):  
Yiwen Wang ◽  
António R. C. Paiva ◽  
José C. Príncipe ◽  
Justin C. Sanchez

Many decoding algorithms for brain machine interfaces' (BMIs) estimate hand movement from binned spike rates, which do not fully exploit the resolution contained in spike timing and may exclude rich neural dynamics from the modeling. More recently, an adaptive filtering method based on a Bayesian approach to reconstruct the neural state from the observed spike times has been proposed. However, it assumes and propagates a gaussian distributed state posterior density, which in general is too restrictive. We have also proposed a sequential Monte Carlo estimation methodology to reconstruct the kinematic states directly from the multichannel spike trains. This letter presents a systematic testing of this algorithm in a simulated neural spike train decoding experiment and then in BMI data. Compared to a point-process adaptive filtering algorithm with a linear observation model and a gaussian approximation (the counterpart for point processes of the Kalman filter), our sequential Monte Carlo estimation methodology exploits a detailed encoding model (tuning function) derived for each neuron from training data. However, this added complexity is translated into higher performance with real data. To deal with the intrinsic spike randomness in online modeling, several synthetic spike trains are generated from the intensity function estimated from the neurons and utilized as extra model inputs in an attempt to decrease the variance in the kinematic predictions. The performance of the sequential Monte Carlo estimation methodology augmented with this synthetic spike input provides improved reconstruction, which raises interesting questions and helps explain the overall modeling requirements better.


2015 ◽  
Vol 12 (6) ◽  
pp. 066014 ◽  
Author(s):  
Yuxi Liao ◽  
Xiwei She ◽  
Yiwen Wang ◽  
Shaomin Zhang ◽  
Qiaosheng Zhang ◽  
...  

2014 ◽  
Vol 2014 ◽  
pp. 1-11 ◽  
Author(s):  
Kai Xu ◽  
Yiwen Wang ◽  
Fang Wang ◽  
Yuxi Liao ◽  
Qiaosheng Zhang ◽  
...  

Sequential Monte Carlo estimation on point processes has been successfully applied to predict the movement from neural activity. However, there exist some issues along with this method such as the simplified tuning model and the high computational complexity, which may degenerate the decoding performance of motor brain machine interfaces. In this paper, we adopt a general tuning model which takes recent ensemble activity into account. The goodness-of-fit analysis demonstrates that the proposed model can predict the neuronal response more accurately than the one only depending on kinematics. A new sequential Monte Carlo algorithm based on the proposed model is constructed. The algorithm can significantly reduce the root mean square error of decoding results, which decreases 23.6% in position estimation. In addition, we accelerate the decoding speed by implementing the proposed algorithm in a massive parallel manner on GPU. The results demonstrate that the spike trains can be decoded as point process in real time even with 8000 particles or 300 neurons, which is over 10 times faster than the serial implementation. The main contribution of our work is to enable the sequential Monte Carlo algorithm with point process observation to output the movement estimation much faster and more accurately.


2008 ◽  
Vol 20 (7) ◽  
pp. 1776-1795 ◽  
Author(s):  
Shinsuke Koyama ◽  
Robert E. Kass

Mathematical models of neurons are widely used to improve understanding of neuronal spiking behavior. These models can produce artificial spike trains that resemble actual spike train data in important ways, but they are not very easy to apply to the analysis of spike train data. Instead, statistical methods based on point process models of spike trains provide a wide range of data-analytical techniques. Two simplified point process models have been introduced in the literature: the time-rescaled renewal process (TRRP) and the multiplicative inhomogeneous Markov interval (m-IMI) model. In this letter we investigate the extent to which the TRRP and m-IMI models are able to fit spike trains produced by stimulus-driven leaky integrate-and-fire (LIF) neurons. With a constant stimulus, the LIF spike train is a renewal process, and the m-IMI and TRRP models will describe accurately the LIF spike train variability. With a time-varying stimulus, the probability of spiking under all three of these models depends on both the experimental clock time relative to the stimulus and the time since the previous spike, but it does so differently for the LIF, m-IMI, and TRRP models. We assessed the distance between the LIF model and each of the two empirical models in the presence of a time-varying stimulus. We found that while lack of fit of a Poisson model to LIF spike train data can be evident even in small samples, the m-IMI and TRRP models tend to fit well, and much larger samples are required before there is statistical evidence of lack of fit of the m-IMI or TRRP models. We also found that when the mean of the stimulus varies across time, the m-IMI model provides a better fit to the LIF data than the TRRP, and when the variance of the stimulus varies across time, the TRRP provides the better fit.


2012 ◽  
Vol 24 (6) ◽  
pp. 1462-1486 ◽  
Author(s):  
Ke Yuan ◽  
Mark Girolami ◽  
Mahesan Niranjan

This letter considers how a number of modern Markov chain Monte Carlo (MCMC) methods can be applied for parameter estimation and inference in state-space models with point process observations. We quantified the efficiencies of these MCMC methods on synthetic data, and our results suggest that the Reimannian manifold Hamiltonian Monte Carlo method offers the best performance. We further compared such a method with a previously tested variational Bayes method on two experimental data sets. Results indicate similar performance on the large data sets and superior performance on small ones. The work offers an extensive suite of MCMC algorithms evaluated on an important class of models for physiological signal analysis.


Sign in / Sign up

Export Citation Format

Share Document