scholarly journals Impact of Custom Features of Do-it-yourself Artificial Pancreas Systems (DIYAPS) on Glycemic Outcomes of People with Type 1 Diabetes

Author(s):  
Wiktoria Staszak ◽  
Jonas Chromik ◽  
Katarina Braune ◽  
Bert Arnrich
2020 ◽  
Vol 11 ◽  
pp. 204201882095014
Author(s):  
Zekai Wu ◽  
Sihui Luo ◽  
Xueying Zheng ◽  
Yan Bi ◽  
Wen Xu ◽  
...  

Background: Previous studies show that the use of do-it-yourself artificial pancreas system (DIYAPS) may be associated with better glycemic control characterized by improved estimated hemoglobin A1c (eHbA1c) and time in range among adults with type 1 diabetes (T1D). However, few studies have demonstrated the changes in laboratory-measured HbA1c, which is a more accepted index for glycemic control, after using a DIYAPS. Methods: This is a retrospective before-after study approaching patients who reported self-use of AndroidAPS. The main inclusion criteria included: T1D; aged ⩾18 years; having complete record of ⩾3 months of continuous AndroidAPS use; with laboratory-measured HbA1c and quality of life scale data before and after 3 months of AndroidAPS use; and not pregnant. The primary outcome was the change in HbA1c between baseline and 3 months after initiation of AndroidAPS use. Results: Overall, 15 patients (10 females) were included; the median age was 32.2 years (range: 19.2–69.4), median diabetes duration was 9.7 years (range: 1.8–23.7) and median baseline HbA1c was 7.3% (range: 6.4–10.1). The 3 months of AndroidAPS use was associated with substantial reductions in HbA1c [6.79% (SD: 1.29) versus 7.63% (SD: 1.06), p = 0.002] and glycemic variability when compared with sensor-augmented pump therapy. A lower level of fear of hypoglycemia [22.13 points (SD: 6.87) versus 26.27 points (SD: 5.82), p = 0.010] was also observed after using AndroidAPS. Conclusions: The 3 months of AndroidAPS use was associated with significant improvements in glucose management and quality of life among adults with T1D.


2020 ◽  
Vol 14 (5) ◽  
pp. 854-859
Author(s):  
Michelle Ng ◽  
Emily Borst ◽  
Ashley Garrity ◽  
Emily Hirschfeld ◽  
Joyce Lee

Background: The Nightscout Project is a leading example of patient-designed, do-it-yourself (DIY), open-source technology innovations to support type 1 diabetes management. We are unaware of studies that have described the evolution of patient-driven innovations from the Nightscout Project to date. Methods: We identified patient-driven, DIY innovations from posts and comments in the “CGM in the Cloud” private Facebook group as well as data from Twitter, GitHub, and the Nightscout website. For each innovation, we described its intent or its unaddressed need as well as the associated features and improvements. We conducted a thematic analysis to identify overarching patterns among the innovations, features, and improvements, and compared the timeline of innovations in the DIY space with the timing of similar innovations in the commercial space. Results: We identified and categorized innovations in Nightscout with the most commonly appearing themes of: visualization improvements, equipment improvements, and user experience improvements. Other emerging themes included: Care Portal support, safety, remote monitoring, decision support, international support, artificial pancreas, pushover notifications, and open-source collaboration. Conclusions: This rapid development of patient-designed DIY innovations driven by unmet needs in the type 1 diabetes community reflects a revolutionary, bottom–up approach to medical innovation. Nightscout users accessed features earlier than if they had waited for commercial products, and they also personalized their tools and devices, empowering them to become the experts of their own care.


2020 ◽  
Vol 37 (9) ◽  
pp. 3929-3941 ◽  
Author(s):  
Syed Haris Ahmed ◽  
David L. Ewins ◽  
Jane Bridges ◽  
Alison Timmis ◽  
Nicola Payne ◽  
...  

2019 ◽  
Vol 10 (5) ◽  
pp. 1553-1564 ◽  
Author(s):  
Dominic C. Marshall ◽  
Melissa Holloway ◽  
Mendy Korer ◽  
James Woodman ◽  
Anna Brackenridge ◽  
...  

10.2196/14087 ◽  
2019 ◽  
Vol 7 (7) ◽  
pp. e14087 ◽  
Author(s):  
Katarina Braune ◽  
Shane O'Donnell ◽  
Bryan Cleal ◽  
Dana Lewis ◽  
Adrian Tappe ◽  
...  

Background Patient-driven initiatives have made uptake of Do-it-Yourself Artificial Pancreas Systems (DIYAPS) increasingly popular among people with diabetes of all ages. Observational studies have shown improvements in glycemic control and quality of life among adults with diabetes. However, there is a lack of research examining outcomes of children and adolescents with DIYAPS in everyday life and their social context. Objective This survey assesses the self-reported clinical outcomes of a pediatric population using DIYAPS in the real world. Methods An online survey was distributed to caregivers to assess the hemoglobin A1c levels and time in range (TIR) before and after DIYAPS initiation and problems during DIYAPS use. Results A total of 209 caregivers of children from 21 countries responded to the survey. Of the children, 47.4% were female, with a median age of 10 years, and 99.4% had type 1 diabetes, with a median duration of 4.3 years (SD 3.9). The median duration of DIYAPS use was 7.5 (SD 10.0) months. Clinical outcomes improved significantly, including the hemoglobin A1c levels (from 6.91% [SD 0.88%] to 6.27% [SD 0.67]; P<.001) and TIR (from 64.2% [SD 15.94] to 80.68% [SD 9.26]; P<.001). Conclusions Improved glycemic outcomes were found across all pediatric age groups, including adolescents and very young children. These findings are in line with clinical trial results from commercially developed closed-loop systems.


PLoS ONE ◽  
2021 ◽  
Vol 16 (4) ◽  
pp. e0248965
Author(s):  
Andrzej Gawrecki ◽  
Dorota Zozulinska-Ziolkiewicz ◽  
Magdalena A. Michalak ◽  
Anna Adamska ◽  
Michal Michalak ◽  
...  

Background The aim of the study was to assess the safety and glycemic outcomes with the use of a Do-It-Yourself (DIY) Hybrid Closed-Loop (HCL) system based on the AndroidAPS application in type 1 diabetes (T1D). Methods Single-center clinical trial, with 3-week run-in and 12-week study period. DIY HCL system consisted of the Dana Diabecare RS insulin pump, Dexcom G5 continuous glucose monitoring system and AndroidAPS application. Primary outcome was safety: incidences of severe hypoglycemia, diabetic ketoacidosis, time spent in glycemia <54 mg/dl. Secondary endpoints included percentage of time in range (TIR) 70–180 mg/dl, time below 70 mg/dl, HbA1c, insulin requirements, and body weight. Results In total 12 subjects (5 men, 7 women) were enrolled, mean age 31.3±6.7, 95%CI(27.7–34.9) years, mean diabetes duration 16.1±5.7, 95%CI(13.0–19.2) years. No episodes of severe hypoglycemia or ketoacidosis were observed. Percentage of time spent in glycemia below 54mg/dl was not increased. Average sensor glycemia was lower in the study period than baseline (141.1 ± 8.4, 95%CI(136.3–145.9) vs. 153.3 ± 17.9, 95%CI(143.2–163.4), mg/dl p<0.001). TIR 70–180 mg/dl was improved by 11.3%, 95%CI(2.8%-19.8%) (from 68.0 ± 12.7 to 79.3 ± 6.4%, p<0.001), without increasing hypoglycemia time. The HbA1c level decreased by -0.5%, 95%CI(-0.9%–-0.1%) (from 6.8 ± 0.5 to 6.3 ± 0.4%, p<0.001). Additionally, in the last 4 weeks of the study period participants significantly improved and showed TIR 70–180 mg/dl 82.1 ± 5.6%, 95%CI(78.9–85.3), time <54 mg/dl 0.30 (0.20–0.55)%, median 95%CI(0.1–0.7) and <70 mg/dl 1.90 (1.10–3.05)%, median 95%CI(0.7–3.2). The insulin requirement and body weight did not change in the study. Conclusions The study revealed safety of the Do-It-Yourself HCL system AndroidAPS in adults with T1D, limited to well-controlled, highly selected and closely monitored patients. The use of AndroidAPS significantly improved HbA1c, time in range and average sensor glycemia without increasing hypoglycemia. As both patients and their medical team are gaining experience using the system over time, they improve glycemic control. Trial registration German Clinical Trials Register: no. DRKS00015439; https://www.drks.de/drks_web/navigate.do?navigationId=trial.HTML&TRIAL_ID=DRKS00015439.


Sign in / Sign up

Export Citation Format

Share Document