Application of a nonlinear PID controller on STATCOM with a differential tracker

Author(s):  
Y. Ni ◽  
L. Jiao ◽  
S. Chen ◽  
B. Zhang
Author(s):  
Minghui Zheng ◽  
Xu Chen ◽  
Masayoshi Tomizuka

This paper aims to develop a nonlinear control algorithm to break the limitations of linear PID controls and improve the transient performance during the short-span track seeking / settling in hard disk drives (HDDs). It is designed based on a baseline PID controller which is well-designed to obtain good track following performance. The control algorithm is a combination of a nonlinear PID controller and a nonlinear turbo controller (NTC): when the position error signal (PES) is large, NTC assists the nonlinear PID controller to rapidly reduce the error; when PES is small, NTC is turned off to avoid possible chattering and ensure good steady state performance. As PES becomes even smaller, the nonlinear PID controller is reduced to the baseline PID controller to keep good steady state performance.


2012 ◽  
Vol 45 (3) ◽  
pp. 81-85 ◽  
Author(s):  
Yoshihiro Ohnishi ◽  
Shin Wakitani ◽  
Toru Yamamoto

2012 ◽  
Vol 241-244 ◽  
pp. 1164-1167
Author(s):  
Ming Biao Yu ◽  
De An Zhao ◽  
Jun Zhang

Considering that the threshing cylinder palstance system has characteristics of nonlinear, time-delay, what’s more the control environment is very complex and multi-disturbance; this paper presented the method of nonlinear PID to control the cylinder palstance. Firstly, The paper analyzes characteristics of the model of the threshing cylinder palstance system .Then the nonlinear PID controller is designed, and with the threshing cylinder palstance system constitute a closed-loop control system. Finally, simulation results show the effectiveness and feasibility of the proposed method.


Sign in / Sign up

Export Citation Format

Share Document