Bottom-up Modeling of Local Energy Markets within a Pan-European Wholesale Electricity Market Model

Author(s):  
Carlo Schmitt ◽  
Kenneth Samaan ◽  
Henrik Schwaeppe ◽  
Albert Moser
2020 ◽  
Author(s):  
Carlo Schmitt ◽  
Kenneth Samaan ◽  
Henrik Schwaeppe ◽  
Albert Moser

The energy system decarbonization and decentralization<br>require coordination schemes for distributed generators<br>and flexibilities. One coordination approach is local energy markets for trading energy among local producers and consumers. The resulting local coordination leads to the questions of how the interaction between local and wholesale markets will be designed and of how the introduction of local energy markets influences the wholesale market system. Therefore, this paper proposes a bottom-up modeling method for local markets within a pan- European wholesale market model. Furthermore, an aggregation-disaggregation method for local markets is developed to reduce computational effort. A case study for local markets in Germany shows the computational advantages of the aggregation-disaggregation method. Preliminary results indicate the impact of different interaction designs between local and wholesale markets on the wholesale market and show the need for further research.


2020 ◽  
Author(s):  
Carlo Schmitt ◽  
Kenneth Samaan ◽  
Henrik Schwaeppe ◽  
Albert Moser

The energy system decarbonization and decentralization<br>require coordination schemes for distributed generators<br>and flexibilities. One coordination approach is local energy markets for trading energy among local producers and consumers. The resulting local coordination leads to the questions of how the interaction between local and wholesale markets will be designed and of how the introduction of local energy markets influences the wholesale market system. Therefore, this paper proposes a bottom-up modeling method for local markets within a pan- European wholesale market model. Furthermore, an aggregation-disaggregation method for local markets is developed to reduce computational effort. A case study for local markets in Germany shows the computational advantages of the aggregation-disaggregation method. Preliminary results indicate the impact of different interaction designs between local and wholesale markets on the wholesale market and show the need for further research.


2021 ◽  
Vol 239 ◽  
pp. 00010
Author(s):  
Tiago Pinto ◽  
Nathalia Boeno ◽  
Zita Vale ◽  
Everthon Sica

Overcoming the issues associated with the variability of renewable generation has become a constant challenge in power and energy systems. The use of load flexibility is one of the most promising ways to face it. Suitable ways to incorporate flexibility in the electricity market, in addition to the already challenging integration of distributed generation primary sources, are therefore crucial. The integration of prosumers and consumers flexibility in the market is, however, not straightforward, as current wholesale and retail market structures are not prepared to deal with the current and future needs of the system. Several models for local energy markets have been studied and experimented; but there it is still not clear what is the most efficient way to integrate the dynamic participation of demand flexibility in this type of local markets.


Author(s):  
Jacopo Torriti

AbstractDuring peak electricity demand periods, prices in wholesale markets can be up to nine times higher than during off-peak periods. This is because if a vast number of users is consuming electricity at the same time, power plants with higher greenhouse gas emissions and higher system costs are typically activated. In the UK, the residential sector is responsible for about one third of overall electricity demand and up to 60% of peak demand. This paper presents an analysis of the 2014–2015 Office for National Statistics National Time Use Survey with a view to derive an intrinsic flexibility index based on timing of residential electricity demand. It analyses how the intrinsic flexibility varies compared with wholesale electricity market prices. Findings show that spot prices and intrinsic flexibility to shift activities vary harmoniously throughout the day. Reflections are also drawn on the application of this research to work on demand side flexibility.


Energy ◽  
2018 ◽  
Vol 142 ◽  
pp. 1083-1103 ◽  
Author(s):  
George P. Papaioannou ◽  
Christos Dikaiakos ◽  
Athanasios S. Dagoumas ◽  
Anargyros Dramountanis ◽  
Panagiotis G. Papaioannou

Energies ◽  
2021 ◽  
Vol 14 (13) ◽  
pp. 3747
Author(s):  
Ricardo Faia ◽  
Tiago Pinto ◽  
Zita Vale ◽  
Juan Manuel Corchado

The participation of household prosumers in wholesale electricity markets is very limited, considering the minimum participation limit imposed by most market participation rules. The generation capacity of households has been increasing since the installation of distributed generation from renewable sources in their facilities brings advantages for themselves and the system. Due to the growth of self-consumption, network operators have been putting aside the purchase of electricity from households, and there has been a reduction in the price of these transactions. This paper proposes an innovative model that uses the aggregation of households to reach the minimum limits of electricity volume needed to participate in the wholesale market. In this way, the Aggregator represents the community of households in market sales and purchases. An electricity transactions portfolio optimization model is proposed to enable the Aggregator reaching the decisions on which markets to participate to maximize the market negotiation outcomes, considering the day-ahead market, intra-day market, and retail market. A case study is presented, considering the Iberian wholesale electricity market and the Portuguese retail market. A community of 50 prosumers equipped with photovoltaic generators and individual storage systems is used to carry out the experiments. A cost reduction of 6–11% is achieved when the community of households buys and sells electricity in the wholesale market through the Aggregator.


2021 ◽  
Vol 7 ◽  
pp. 4905-4929
Author(s):  
Yiannis Kontochristopoulos ◽  
Serafeim Michas ◽  
Nikos Kleanthis ◽  
Alexandros Flamos

Sign in / Sign up

Export Citation Format

Share Document