Dynamic analysis and field verification of an innovative anti-islanding protection scheme based on directional reactive power detection

Author(s):  
Farid Katiraei ◽  
Aidan Foss ◽  
Chad Abbey ◽  
Benjamin Strehler

This research work present a protection scheme for fault detection and fault classification in EHV with static synchronous compensator (STATCOM) using Regulated Power index (RPI) concept. RPI per phase is defined as the ratio of the sum of sending end apparent power and receiving end apparent power to the apparent power at receiving end for that phase [1]. STATCOM is used for reactive power compensation and regulates the system voltage by absorbing and generating reactive power. As per the requirement of system parameter scheme is developed for the detection of fault, identification of faulty phase and tripping the faulty phase. This scheme will be validated by considering various fault test cases considering severe fault conditions with very low resistance, high fault resistance conditions and internal faults with static synchronous compensator (STATCOM) at sending end on the MATLAB model of transmission system at 220 KV level.


2022 ◽  
Vol 204 ◽  
pp. 107703
Author(s):  
Chuanjian Wu ◽  
Dahai Zhang ◽  
Jinghan He

Author(s):  
Hui Hwang Goh ◽  
Sy yi Sim ◽  
Mohd. Nasri Abd Samat ◽  
Ahmad Mahmoud Mohamed ◽  
Chin Wan Ling ◽  
...  

<p>Synchronous generators require certain protection against loss of excitation because it can lead to harmful effect to a generator and main grid. Systems of powers are evolving with applications of new techniques to increase reliability and security, at the meantime techniques upgradation is being existed to save financial cost of a different component of power system, which affect protection ways this report discuss the way of loss of excitation protection scheme for an increase in a synchronous generator. It is obvious that when direct axis synchronous reactance has a high value, the coordination among loss of excitation protection and excitation control is not effective. This lead to restricting absorption capability of the reactive power generator. This report also reviews the suitable philosophy for setting the limiters of excitation and discusses its effect on loss of excitation protection and system performance. A protection scheme is developed to allow for utilization of machine capability and power swing blocking is developed to increase the reliability when power swing is stable.</p><p><em> </em></p>


Energies ◽  
2020 ◽  
Vol 13 (9) ◽  
pp. 2350 ◽  
Author(s):  
Shazia Baloch ◽  
Saeed Zaman Jamali ◽  
Khawaja Khalid Mehmood ◽  
Syed Basit Ali Bukhari ◽  
Muhammad Saeed Uz Zaman ◽  
...  

To resolve the protection issues caused by high penetration of distributed energy resources, this paper proposes an efficient protection scheme for microgrids based on the autocorrelation of three-phase current envelopes. The proposed strategy uses a squaring and low-pass filtering approach for evaluating the envelope of the current signal. Then, the variance of the autocorrelation function is used to extract the hidden information of the distorted envelope to detect the fault signatures in the microgrid. Furthermore, the reactive power is used for determining the fault direction. The performance of the proposed protection scheme was verified on a standard medium-voltage microgrid by performing simulations in the MATLAB/Simulink environment (Version: R2017b). The proposed scheme was shown to be easy to implement and have good performance under looped and radial configuration for both grid-connected and islanded operation modes. The simulation results showed that the scheme could not only detect, locate, classify, and isolate various types of short-circuit faults effectively but also provide backup protection in case of primary protection failure.


2011 ◽  
Vol 383-390 ◽  
pp. 5188-5192
Author(s):  
B. Gu ◽  
J.C. Tan

A transformer protection scheme using fault component computed from instantaneous measurement values is proposed in this paper. The algorithm utilizes reactive power directional elements computed from the received IEC 61850-9-2 sampled values, and uses the ratio of active and reactive currents to determine an inrush condition. A transformer fault is declaimed if the directional elements from all transformer terminals seen the fault in its forward direction. Extensive simulation tests show that the proposed algorithm is sensitive to detecting faults, and is able to distinguish faults internal or external to the protected transformer zone, and to discriminate a fault from inrush conditions.


2016 ◽  
Vol 17 (6) ◽  
pp. 619-630 ◽  
Author(s):  
Snehaprava Swain ◽  
Pravat Kumar Ray

Abstract In this paper a three phase fault analysis is done on a DFIG based grid integrated wind energy system. A Novel Active Crowbar Protection (NACB_P) system is proposed to enhance the Fault-ride through (FRT) capability of DFIG both for symmetrical as well as unsymmetrical grid faults. Hence improves the power quality of the system. The protection scheme proposed here is designed with a capacitor in series with the resistor unlike the conventional Crowbar (CB) having only resistors. The major function of the capacitor in the protection circuit is to eliminate the ripples generated in the rotor current and to protect the converter as well as the DC-link capacitor. It also compensates reactive power required by the DFIG during fault. Due to these advantages the proposed scheme enhances the FRT capability of the DFIG and also improves the power quality of the whole system. Experimentally the fault analysis is done on a 3hp slip ring induction generator and simulation results are carried out on a 1.7 MVA DFIG based WECS under different types of grid faults in MATLAB/Simulation and functionality of the proposed scheme is verified.


2013 ◽  
Vol 291-294 ◽  
pp. 2250-2253
Author(s):  
Hui Lan Jiang ◽  
Man Zhang

Low voltage ride-through (LVRT) capability has become more important to the doubly-fed induction generator (DFIG) as the penetration of wind power increases. This paper analyses the LVRT influence on the neighboring wind farm, mainly considering the crowbar action during a fault. On the basis, a new protection scheme for the DFIG is proposed to prevent the negative influence, primarily based on a rotor series resistor and a reactive power compensation device. And the adaptive control strategy is presented. Through the simulation, characteristics of DFIG in the neighboring wind farm with and without the protection scheme are compared. The results show that the cascading crowbar action can be avoided by the protection scheme and it is advantageous for grid voltage restoration.


2019 ◽  
Vol 13 (20) ◽  
pp. 4551-4557 ◽  
Author(s):  
Vibhuti Nougain ◽  
Manas Kumar Jena ◽  
Bijaya Ketan Panigrahi

Sign in / Sign up

Export Citation Format

Share Document