Robust Position Control for a Pneumatic Cylinder

Author(s):  
P. Korondi ◽  
J. Gyeviki
1999 ◽  
Vol 11 (4) ◽  
pp. 251-257 ◽  
Author(s):  
Tetsuya Akagi ◽  
◽  
Shujiro Dohta ◽  
Hisashi Matsushita ◽  

This paper describes an analysis of an opto-pneumatic control system and an improvement of control performance of the system. The opto-pneumatic system consists of an optical servo valve, a pneumatic cylinder and a cart. First, we built an analytical model of the system considering a nonlinear friction where exists in sliding parts. And we confirmed the validity of the proposed model by comparing theoretical results with experimental results of the characteristics of optical servo valve and cart position control. Then, we applied a sliding mode control scheme compensating a steady-state disturbance to multi- position control and follow-up control of a cart. By computer simulation, we confirmed that the control performance of opto-pneumatic control system was improved by using this control scheme.


2016 ◽  
Vol 28 (10) ◽  
pp. 1303-1321 ◽  
Author(s):  
Max Cinq-Mars ◽  
Hakan Gurocak

This research explored a new linear hybrid actuator, which consists of a pneumatic cylinder with a magnetorheological brake embedded in its piston. Magnetorheological brakes are promising actuators since they can apply large forces in a small actuator size, but they can only oppose motion, as they are passive actuators. Pneumatic cylinders are desirable actuators due to their high force-to-weight ratio and ability to apply active forces. However, they require expensive servo valves for precise position control. The new hybrid actuator benefits from the advantages of magnetorheological brakes and pneumatic cylinders. It can apply forces using compressed air and can resist external forces using the magnetorheological brake. The embedded brake also eliminates the undesirable side effects of using compressed air and allows precise positioning of the piston anywhere in its stroke with simple solenoid valves. Fields such as haptics and robotics might benefit greatly from the use of the hybrid actuator where a high force-to-weight ratio could be employed. The study contributes (1) a triple helix flux guide for the linear magnetorheological brake, (2) serpentine flux path to enable larger braking forces, (3) shear mode activation, and (4) control algorithms that enable use of simple solenoid valves and improved power efficiency. When compared to an existing purely pneumatic control algorithm, the hybrid actuator exceeded the performance in position tracking and force disturbance rejection. A power management algorithm demonstrated that disabling the brake when the piston was in position vastly decreases the power consumption.


1991 ◽  
Vol 22 (2) ◽  
pp. 162-168 ◽  
Author(s):  
Kyoji HASHIMOTO ◽  
Masao IMAEDA ◽  
Katsunobu KONISHI ◽  
Koutaro KIKUWA

2014 ◽  
Vol 488-489 ◽  
pp. 1142-1145
Author(s):  
Sheng Zhong Li ◽  
Jian Xin Liu ◽  
Yi Fei Xia

Put forward a kind of control system to achieve precise positioning of the pneumatic cylinder, coring to PC upper monitor and using Visual C++ as the development platform. Establish an experimental platform of pneumatic cylinder positioning control system: selecting the parameter self-tuning Fuzzy-PID control algorithm, using the proportional directional control valve, standard cylinder, displacement sensordata acquisition card and other components. the use of MATLAB to simulate and optimize, carry out the actual experiment on the basis of simulation. The experimental results proved the effectiveness and correctness of Fuzzy PID in pneumatic control system.


Sign in / Sign up

Export Citation Format

Share Document