Parallel SIMD - A Policy Based Solution for Free Speed-Up using C++ Data-Parallel Types

Author(s):  
Srinivas Yadav ◽  
Nikunj Gupta ◽  
Auriane Reverdell ◽  
Hartmut Kaiser
Keyword(s):  
2013 ◽  
Vol 756-759 ◽  
pp. 1314-1319
Author(s):  
Wei Ling Wang

In order to improve the compression speed of JPEG2000, the JPEG2000 compression standard is analysised and it concluded that the part data of the core algorithm that is DWT in JPEG2000 are independent from each other, so it is very suitable for parallel processing. CUDA (Compute Unified Device Architecture) is a latest software and hardware exploitation platform released by NVIDIA which is very suitable for large-scale data parallel computing.Using CUDA technology on general purpose graphic process unit (GPGPU) could speed up DWT algorithm parallelly and the program is optimized based on the characteristics of GPGPU storage space. The obtained experimental results show the DWT algorithm that is optimized by CUDA parallelly can improve the computing speed.


Author(s):  
Sina Madani ◽  
Dimitris Kolovos ◽  
Richard F. Paige

AbstractScalable performance is a major challenge with current model management tools. As the size and complexity of models and model management programs increases and the cost of computing falls, one solution for improving performance of model management programs is to perform computations on multiple computers. In this paper, we demonstrate a low-overhead data-parallel approach for distributed model validation in the context of an OCL-like language. Our approach minimises communication costs by exploiting the deterministic structure of programs and can take advantage of multiple cores on each (heterogeneous) machine with highly configurable computational granularity. Our performance evaluation shows that the implementation is extremely low overhead, achieving a speed up of 24.5$$\times $$ × with 26 computers over the sequential case, and 122$$\times $$ × when utilising all six cores on each computer.


Author(s):  
Brian Cross

A relatively new entry, in the field of microscopy, is the Scanning X-Ray Fluorescence Microscope (SXRFM). Using this type of instrument (e.g. Kevex Omicron X-ray Microprobe), one can obtain multiple elemental x-ray images, from the analysis of materials which show heterogeneity. The SXRFM obtains images by collimating an x-ray beam (e.g. 100 μm diameter), and then scanning the sample with a high-speed x-y stage. To speed up the image acquisition, data is acquired "on-the-fly" by slew-scanning the stage along the x-axis, like a TV or SEM scan. To reduce the overhead from "fly-back," the images can be acquired by bi-directional scanning of the x-axis. This results in very little overhead with the re-positioning of the sample stage. The image acquisition rate is dominated by the x-ray acquisition rate. Therefore, the total x-ray image acquisition rate, using the SXRFM, is very comparable to an SEM. Although the x-ray spatial resolution of the SXRFM is worse than an SEM (say 100 vs. 2 μm), there are several other advantages.


Author(s):  
A. G. Jackson ◽  
M. Rowe

Diffraction intensities from intermetallic compounds are, in the kinematic approximation, proportional to the scattering amplitude from the element doing the scattering. More detailed calculations have shown that site symmetry and occupation by various atom species also affects the intensity in a diffracted beam. [1] Hence, by measuring the intensities of beams, or their ratios, the occupancy can be estimated. Measurement of the intensity values also allows structure calculations to be made to determine the spatial distribution of the potentials doing the scattering. Thermal effects are also present as a background contribution. Inelastic effects such as loss or absorption/excitation complicate the intensity behavior, and dynamical theory is required to estimate the intensity value.The dynamic range of currents in diffracted beams can be 104or 105:1. Hence, detection of such information requires a means for collecting the intensity over a signal-to-noise range beyond that obtainable with a single film plate, which has a S/N of about 103:1. Although such a collection system is not available currently, a simple system consisting of instrumentation on an existing STEM can be used as a proof of concept which has a S/N of about 255:1, limited by the 8 bit pixel attributes used in the electronics. Use of 24 bit pixel attributes would easily allowthe desired noise range to be attained in the processing instrumentation. The S/N of the scintillator used by the photoelectron sensor is about 106 to 1, well beyond the S/N goal. The trade-off that must be made is the time for acquiring the signal, since the pattern can be obtained in seconds using film plates, compared to 10 to 20 minutes for a pattern to be acquired using the digital scan. Parallel acquisition would, of course, speed up this process immensely.


2004 ◽  
Vol 63 (1) ◽  
pp. 17-29 ◽  
Author(s):  
Friedrich Wilkening ◽  
Claudia Martin

Children 6 and 10 years of age and adults were asked how fast a toy car had to be to catch up with another car, the latter moving with a constant speed throughout. The speed change was required either after half of the time (linear condition) or half of the distance (nonlinear condition), and responses were given either on a rating scale (judgment condition) or by actually producing the motion (action condition). In the linear condition, the data patterns for both judgments and actions were in accordance with the normative rule at all ages. This was not true for the nonlinear condition, where children’s and adults’ judgment and also children’s action patterns were linear, and only adults’ action patterns were in line with the nonlinearity principle. Discussing the reasons for the misconceptions and for the action-judgment dissociations, a claim is made for a new view on the development of children’s concepts of time and speed.


Nature ◽  
2020 ◽  
Vol 584 (7820) ◽  
pp. 192-192 ◽  
Author(s):  
Lucila Ohno-Machado ◽  
Hua Xu
Keyword(s):  

Nature ◽  
2005 ◽  
Author(s):  
David Cyranoski
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document