Current status on GaN-based RF-power devices

Author(s):  
Tetsuzo Ueda ◽  
Tsuyoshi Tanaka ◽  
Daisuke Ueda
Author(s):  
Tetsuzo Ueda ◽  
Tsuyoshi Tanaka ◽  
Daisuke Ueda

2005 ◽  
Vol 483-485 ◽  
pp. 765-768 ◽  
Author(s):  
Jun Hai Xia ◽  
E. Rusli ◽  
R. Gopalakrishnan ◽  
S.F. Choy ◽  
Chin Che Tin ◽  
...  

Reactive ion etching of SiC induced surface damage, e.g., micromasking effect induced coarse and textured surface, is one of the main concerns in the fabrication of SiC based power devices [1]. Based on CHF3 + O2 plasma, 4H-SiC was etched under a wide range of RF power. Extreme coarse and textured etched surfaces were observed under certain etching conditions. A super-linear relationship was found between the surface roughness and RF power when the latter was varied from 40 to 160 W. A further increase in the RF power to 200 W caused the surface roughness to drop abruptly from its maximum value of 182.4 nm to its minimum value of 1.3 nm. Auger electron spectroscopy (AES) results revealed that besides the Al micromasking effect, the carbon residue that formed a carbon-rich layer, could also play a significant role in affecting the surface roughness. Based on the AES results, an alternative explanation on the origin of the coarse surface is proposed.


2009 ◽  
Vol 1203 ◽  
Author(s):  
Maria Cristina Rossi ◽  
Paolo Calvani ◽  
Gennaro Conte ◽  
Vittorio Camarchia ◽  
Federica Cappelluti ◽  
...  

AbstractLarge-signal radiofrequency performances of surface channel diamond MESFET fabricated on hydrogenated polycrystalline diamond are investigated. The adopted device structure is a typical coplanar two-finger gate layout, characterized in DC by an accumulation-like behavior with threshold voltage Vt ∼ 0-0.5 V and maximum DC drain current of 120 mA/mm. The best radiofrequency performances (in terms of fT and fmax) were obtained close to the threshold voltage. Realized devices are analyzed in standard class A operation, at an operating frequency of 2 GHz. The MESFET devices show a linear power gain of 8 dB and approximately 0.2 Wmm RF output power with 22% power added efficiency. An output power density of about 0.8 W/mm can be then extrapolated at 1 GHz, showing the potential of surface channel MESFET technology on polycrystalline diamond for microwave power devices.


Sign in / Sign up

Export Citation Format

Share Document