scholarly journals ISAR image formation with a combined empirical mode decomposition and time frequency representation

Author(s):  
Bay Ahmed Hadj Ahmed ◽  
Jean-Christophe Cexus ◽  
Abdelmalek Toumi
2010 ◽  
Vol 02 (03) ◽  
pp. 373-396 ◽  
Author(s):  
DANIEL N. KASLOVSKY ◽  
FRANÇOIS G. MEYER

Huang's Empirical Mode Decomposition (EMD) is an algorithm for analyzing nonstationary data that provides a localized time-frequency representation by decomposing the data into adaptively defined modes. EMD can be used to estimate a signal's instantaneous frequency (IF) but suffers from poor performance in the presence of noise. To produce a meaningful IF, each mode of the decomposition must be nearly monochromatic, a condition that is not guaranteed by the algorithm and fails to be met when the signal is corrupted by noise. In this work, the extraction of modes containing both signal and noise is identified as the cause of poor IF estimation. The specific mechanism by which such "transition" modes are extracted is detailed and builds on the observation of Flandrin and Goncalves that EMD acts in a filter bank manner when analyzing pure noise. The mechanism is shown to be dependent on spectral leak between modes and the phase of the underlying signal. These ideas are developed through the use of simple signals and are tested on a synthetic seismic waveform.


Geophysics ◽  
2014 ◽  
Vol 79 (3) ◽  
pp. V55-V64 ◽  
Author(s):  
Roberto H. Herrera ◽  
Jiajun Han ◽  
Mirko van der Baan

Time-frequency representation of seismic signals provides a source of information that is usually hidden in the Fourier spectrum. The short-time Fourier transform and the wavelet transform are the principal approaches to simultaneously decompose a signal into time and frequency components. Known limitations, such as trade-offs between time and frequency resolution, may be overcome by alternative techniques that extract instantaneous modal components. Empirical mode decomposition aims to decompose a signal into components that are well separated in the time-frequency plane allowing the reconstruction of these components. On the other hand, a recently proposed method called the “synchrosqueezing transform” (SST) is an extension of the wavelet transform incorporating elements of empirical mode decomposition and frequency reassignment techniques. This new tool produces a well-defined time-frequency representation allowing the identification of instantaneous frequencies in seismic signals to highlight individual components. We introduce the SST with applications for seismic signals and produced promising results on synthetic and field data examples.


2012 ◽  
Vol 433-440 ◽  
pp. 6256-6261
Author(s):  
Zhi Hua Hao ◽  
Zhuang Ma ◽  
Hao Miao Zhou

The reassignment method is a technique for sharpening a time-frequency representation by mapping the data to time-frequency coordinates that are nearer to the true region of support of the analyzed signal. The reassignment method has been proved to produce a better localization of the signal components and improve the readability of the time-frequency representation by concentrating its energy at a center of gravity. But there are still few cross-terms. Then, the empirical mode decomposition is introduced to the reassignment method to suppress the interference of the cross-term encountered in processing the multi-component signals. The multi-component signal can be decomposed into a finite number intrinsic mode function by using EMD. Then, the reassignment method can be calculated for each of the intrinsic mode function. Simulation analysis is presented to show that this method can improve the localization of time-frequency representation and reduce the cross terms. The vibration signals measured from diesel engine in the stage of deflagrate were analyzed with the reassignment method. Experimental results indicate that this method has good potential in mechanical fault feature extraction.


Electronics ◽  
2021 ◽  
Vol 10 (11) ◽  
pp. 1248
Author(s):  
Rafia Nishat Toma ◽  
Cheol-Hong Kim ◽  
Jong-Myon Kim

Condition monitoring is used to track the unavoidable phases of rolling element bearings in an induction motor (IM) to ensure reliable operation in domestic and industrial machinery. The convolutional neural network (CNN) has been used as an effective tool to recognize and classify multiple rolling bearing faults in recent times. Due to the nonlinear and nonstationary nature of vibration signals, it is quite difficult to achieve high classification accuracy when directly using the original signal as the input of a convolution neural network. To evaluate the fault characteristics, ensemble empirical mode decomposition (EEMD) is implemented to decompose the signal into multiple intrinsic mode functions (IMFs) in this work. Then, based on the kurtosis value, insignificant IMFs are filtered out and the original signal is reconstructed with the rest of the IMFs so that the reconstructed signal contains the fault characteristics. After that, the 1-D reconstructed vibration signal is converted into a 2-D image using a continuous wavelet transform with information from the damage frequency band. This also transfers the signal into a time-frequency domain and reduces the nonstationary effects of the vibration signal. Finally, the generated images of various fault conditions, which possess a discriminative pattern relative to the types of faults, are used to train an appropriate CNN model. Additionally, with the reconstructed signal, two different methods are used to create an image to compare with our proposed image creation approach. The vibration signal is collected from a self-designed testbed containing multiple bearings of different fault conditions. Two other conventional CNN architectures are compared with our proposed model. Based on the results obtained, it can be concluded that the image generated with fault signatures not only accurately classifies multiple faults with CNN but can also be considered as a reliable and stable method for the diagnosis of fault bearings.


2021 ◽  
pp. 107754632110069
Author(s):  
Sandeep Sony ◽  
Ayan Sadhu

In this article, multivariate empirical mode decomposition is proposed for damage localization in structures using limited measurements. Multivariate empirical mode decomposition is first used to decompose the acceleration responses into their mono-component modal responses. The major contributing modal responses are then used to evaluate the modal energy for the respective modes. A damage localization feature is proposed by calculating the percentage difference in the modal energies of damaged and undamaged structures, followed by the determination of the threshold value of the feature. The feature of the specific sensor location exceeding the threshold value is finally used to identify the location of structural damage. The proposed method is validated using a suite of numerical and full-scale studies. The validation is further explored using various limited measurement cases for evaluating the feasibility of using a fewer number of sensors to enable cost-effective structural health monitoring. The results show the capability of the proposed method in identifying as minimal as 2% change in global modal parameters of structures, outperforming the existing time–frequency methods to delineate such minor global damage.


2020 ◽  
Vol 0 (0) ◽  
Author(s):  
Byuckjin Lee ◽  
Byeongnam Kim ◽  
Sun K. Yoo

AbstractObjectivesThe phase characteristics of the representative frequency components of the Electroencephalogram (EEG) can be a means of understanding the brain functions of human senses and perception. In this paper, we found out that visual evoked potential (VEP) is composed of the dominant multi-band component signals of the EEG through the experiment.MethodsWe analyzed the characteristics of VEP based on the theory that brain evoked potentials can be decomposed into phase synchronized signals. In order to decompose the EEG signal into across each frequency component signals, we extracted the signals in the time-frequency domain with high resolution using the empirical mode decomposition method. We applied the Hilbert transform (HT) to extract the signal and synthesized it into a frequency band signal representing VEP components. VEP could be decomposed into phase synchronized δ, θ, α, and β frequency signals. We investigated the features of visual brain function by analyzing the amplitude and latency of the decomposed signals in phase synchronized with the VEP and the phase-locking value (PLV) between brain regions.ResultsIn response to visual stimulation, PLV values were higher in the posterior lobe region than in the anterior lobe. In the occipital region, the PLV value of theta band was observed high.ConclusionsThe VEP signals decomposed into constituent frequency components through phase analysis can be used as a method of analyzing the relationship between activated signals and brain function related to visual stimuli.


2021 ◽  
Vol 2021 ◽  
pp. 1-10
Author(s):  
Chen-yang Ma ◽  
Li Wu ◽  
Miao Sun ◽  
Qing Yuan

The traditional empirical mode decomposition method cannot accurately extract the time-frequency characteristic parameters contained in the noisy seismic monitoring signals. In this paper, the time-frequency analysis model of CEEMD-MPE-HT is established by introducing the multiscale permutation entropy (MPE), combining with the optimized empirical mode decomposition (CEEMD) and Hilbert transform (HT). The accuracy of the model is verified by the simulation signal mixed with noise. Based on the project of Loushan two-to-four in situ expansion tunnel, a CEEMD-MPE-HT model is used to extract and analyze the time-frequency characteristic parameters of blasting seismic signals. The results show that the energy of the seismic wave signal is mainly concentrated in the frequency band above 100 Hz, while the natural vibration frequency of the adjacent existing tunnel is far less than this frequency band, and the excavation blasting of the tunnel will not cause the resonance of the adjacent existing tunnel.


Sign in / Sign up

Export Citation Format

Share Document