A fast analytical model of Electromagnetic Acoustic Transducers for evaluation of flat non-magnetic conductors

Author(s):  
Yong Li ◽  
Yi-li Li ◽  
Zhen-mao Chen
Author(s):  
Yuedong Xie ◽  
Wuliang Yin ◽  
Lijun Xu

Electromagnetic acoustic transducers (EMATs) are widely used in industries due to its non-contact nature. This paper investigates the beam features of unidirectional Rayleigh waves EMATs, especially the effect of the wire length on beam directivity. A wholly analytical model is developed to calculate the Lorentz force distribution and ultrasound displacement distribution. The modelling results indicate that, compared to the coil consists of shorter wires, the coil consists of longer wires results in a narrower bandwidth of main lobe of unidirectional Rayleigh waves, which means the ultrasound are more concentrated. This study can be used for unidirectional Rayleigh waves EMATs design and optimization.


2021 ◽  
Vol 79 (7) ◽  
pp. 715-727
Author(s):  
Hamidreza Nemati ◽  
Fernando Alvidrez ◽  
Ankit Das ◽  
Nihar Masurkar ◽  
Manoj Rudraboina ◽  
...  

Tubular structures are critical components in infrastructure such as power plants. Throughout their life, they are subjected to extreme conditions or suffer from defects such as corrosion and cracks. Although regular inspection of these components is necessary, such inspection is limited by safety-related risks and limited access for human inspection. Robots can provide a solution for automatic inspection. The main challenge, however, lies in integrating sensors for nondestructive evaluation with robotic platforms. As part of developing a versatile lizard-inspired tube inspector robot, in this study the authors propose to integrate electromagnetic acoustic transducers into a modular robotic gripper for use in automated ultrasonic inspection. In particular, spiral coils with cylindrical magnets are integrated into a novel friction-based gripper to excite Lamb waves in thin cylindrical structures. To evaluate the performance of the integrated sensors, the gripper was attached to a robotic arm manipulator and tested on pipes of different outer diameters. Two sets of tests were carried out on both defect-free pipes and pipes with simulated defects, including surface partial cracking and corrosion. The inspection results indicated that transmitted and received signals could be acquired with an acceptable signal-to-noise ratio in the time domain. Moreover, the simulated defects could be successfully detected using the integrated robotic sensing system.


Sign in / Sign up

Export Citation Format

Share Document