Modeling capability of type-1 fuzzy set and interval type-2 fuzzy set

Author(s):  
Maowen Nie ◽  
Woei Wan Tan
Keyword(s):  
Author(s):  
Han-Chen Huang ◽  
Xiaojun Yang

Since Zadeh introduced fuzzy sets, a lot of extensions of this concept have been proposed, such as type-2 fuzzy sets, nonstationary fuzzy sets, and cloud models, to represent higher levels of uncertainty. This paper provides a comparative investigation of type-2 fuzzy sets, nonstationary fuzzy sets, and cloud models. Type-2 fuzzy sets study the fuzziness of the membership function (MF) using primary MF and secondary MF based on analytic mathematical methods; nonstationary fuzzy sets study the randomness of the MF using primary MF and variation function based on type-1 fuzzy sets theory; cloud models study the randomness of the distribution of samples in the universe and generate random membership grades (MGs) using two random variables based on probability and statistic mathematical methods. They all concentrate on dealing with the uncertainty of the MF or the MG which type-1 fuzzy sets do not consider, and thus have many similarities. Moreover, we find out that, the same qualitative concept “moderate amount” can be represented by an interval type-2 fuzzy set, a nonstationary fuzzy set or a normal cloud model, respectively. Then, we propose a unified mathematical expression for the interval type-2 fuzzy set, nonstationary fuzzy set and normal cloud model. On the other hand, we also find out that, the theory fundament and underlying motivations of these models are quite different. Therefore, We summarize detailed comparisons of distinctive properties of type-2 fuzzy sets, nonstationary fuzzy sets, and cloud models. Further, we study their diverse characteristics of distributions of MGs across vertical slices. The comparative investigation shows that these models are complementary to describe the uncertainty from different points of view. Thus, this paper provides a fundamental contribution and makes a basic reference for knowledge representation and other applications with uncertainty.


2021 ◽  
pp. 1-18
Author(s):  
Le Jiang ◽  
Hongbin Liu

The use of probabilistic linguistic term sets (PLTSs) means the process of computing with words. The existing methods computing with PLTSs mainly use symbolic model. To provide a semantic model for computing with PLTSs, we propose to represent a PLTS by using an interval type-2 fuzzy set (IT2FS). The key step is to compute the footprint of uncertainty of the IT2FS. To this aim, the upper membership function is computed by aggregating the membership functions of the linguistic terms contained in the PLTS, and the lower membership function is obtained by moving the upper membership function downward with the step being total entropy of the PLTS. The comparison rules, some operations, and an aggregation operator for PLTSs are introduced. Based on the proposed method of computing with PLTSs, a multi-criteria group decision making model is introduced. The proposed decision making model is then applied in green supplier selection problem to show its feasibility.


2021 ◽  
pp. 1-28
Author(s):  
Ashraf Norouzi ◽  
Hossein Razavi hajiagha

Multi criteria decision-making problems are usually encounter implicit, vague and uncertain data. Interval type-2 fuzzy sets (IT2FS) are widely used to develop various MCDM techniques especially for cases with uncertain linguistic approximation. However, there are few researches that extend IT2FS-based MCDM techniques into qualitative and group decision-making environment. The present study aims to adopt a combination of hesitant and interval type-2 fuzzy sets to develop an extension of Best-Worst method (BWM). The proposed approach provides a flexible and convenient way to depict the experts’ hesitant opinions especially in group decision-making context through a straightforward procedure. The proposed approach is called IT2HF-BWM. Some numerical case studies from literature have been used to provide illustrations about the feasibility and effectiveness of our proposed approach. Besides, a comparative analysis with an interval type-2 fuzzy AHP is carried out to evaluate the results of our proposed approach. In each case, the consistency ratio was calculated to determine the reliability of results. The findings imply that the proposed approach not only provides acceptable results but also outperforms the traditional BWM and its type-1 fuzzy extension.


2014 ◽  
Vol 06 (02) ◽  
pp. 70-93 ◽  
Author(s):  
Hugo Araujo ◽  
Bo Xiao ◽  
Chuang Liu ◽  
Yanbin Zhao ◽  
H. K. Lam

Sign in / Sign up

Export Citation Format

Share Document