Tracking control for a non-holonomic car-like robot using dynamic feedback linearization based on piecewise bilinear models

Author(s):  
Tadanari Taniguchi ◽  
Luka Eciolaza ◽  
Michio Sugeno

Author(s):  
Ji-Chul Ryu ◽  
Sunil K. Agrawal ◽  
Jaume Franch

This paper presents a methodology for trajectory planning and tracking control of a tractor with a steerable trailer based on the system’s dynamic model. The theory of differential flatness is used as the basic approach in these developments. Flat outputs are found that linearize the system’s dynamic model using dynamic feedback linearization, a subclass of differential flatness. It is demonstrated that this property considerably simplifies motion planning and the development of controller. Simulation results are presented in the paper, which show that the developed controller has the desirable performance with exponential stability.



Author(s):  
Ji-Chul Ryu ◽  
Sunil K. Agrawal ◽  
Jaume Franch

This paper presents a methodology for trajectory planning and tracking control of a tractor with a steerable trailer based on the system’s dynamic model. The theory of differential flatness is used as the basic approach in these developments. Flat outputs are found that linearize the system’s dynamic model using dynamic feedback linearization, a subclass of differential flatness. It is demonstrated that this property considerably simplifies motion planning and the development of controller. Simulation results are presented in the paper, which show that the developed controller has the desirable performance with exponential stability.



Sign in / Sign up

Export Citation Format

Share Document