quadrotor control
Recently Published Documents


TOTAL DOCUMENTS

76
(FIVE YEARS 28)

H-INDEX

13
(FIVE YEARS 2)

Sensors ◽  
2021 ◽  
Vol 22 (1) ◽  
pp. 150
Author(s):  
Cheongwoong Kang ◽  
Bumjin Park ◽  
Jaesik Choi

Recently, the use of quadrotors has increased in numerous applications, such as agriculture, rescue, transportation, inspection, and localization. Time-optimal quadrotor waypoint tracking is defined as controlling quadrotors to follow the given waypoints as quickly as possible. Although PID control is widely used for quadrotor control, it is not adaptable to environmental changes, such as various trajectories and dynamic external disturbances. In this work, we discover that adjusting PID control frequencies is necessary for adapting to environmental changes by showing that the optimal control frequencies can be different for different environments. Therefore, we suggest a method to schedule the PID position and attitude control frequencies for time-optimal quadrotor waypoint tracking. The method includes (1) a Control Frequency Agent (CFA) that finds the best control frequencies in various environments, (2) a Quadrotor Future Predictor (QFP) that predicts the next state of a quadrotor, and (3) combining the CFA and QFP for time-optimal quadrotor waypoint tracking under unknown external disturbances. The experimental results prove the effectiveness of the proposed method by showing that it reduces the travel time of a quadrotor for waypoint tracking.


Author(s):  
Humaira Hasnol Hady ◽  
Elya M. N. ◽  
Azrena A. B. ◽  
Siti Noormiza Makhtar

2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Hasan Saribas ◽  
Sinem Kahvecioglu

Purpose This study aims to compare the performance of the conventional and fractional order proportional-integral-derivative (PID and FOPID) controllers tuned with a particle swarm optimization (PSO) and genetic algorithm (GA) for quadrotor control. Design/methodology/approach In this study, the gains of the controllers were tuned using PSO and GA, which are included in the heuristic optimization methods. The tuning processes of the controller’s gains were formulated as optimization problems. While generating the objective functions (cost functions), four different decision criteria were considered separately: integrated summation error (ISE), integrated absolute error, integrated time absolute error and integrated time summation error (ITSE). Findings According to the simulation results and comparison tables that were created, FOPID controllers tuned with PSO performed better performances than PID controllers. In addition, the ITSE criterion returned better results in control of all axes except for altitude control when compared to the other cost functions. In the control of altitude with the PID controller, the ISE criterion showed better performance. Originality/value While a conventional PID controller has three parameters (Kp, Ki, Kd) that need to be tuned, FOPID controllers have two additional parameters (µ). The inclusion of these two extra parameters means more flexibility in the controller design but much more complexity for parameter tuning. This study reveals the potential and effectiveness of PSO and GA in tuning the controller despite the increased number of parameters and complexity.


2020 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Taki Eddine Lechekhab ◽  
Stojadin Manojlovic ◽  
Momir Stankovic ◽  
Rafal Madonski ◽  
Slobodan Simic

Purpose The control of a quadrotor unmanned aerial vehicle (UAV) is a challenging problem because of its highly nonlinear dynamics, under-actuated nature and strong cross-couplings. To solve this problem, this paper aims to propose a robust control strategy, based on a concept of active disturbance rejection control (ADRC). Design/methodology/approach The altitude/attitude dynamics of a quadrotor is reformulated into the ADRC framework. Three distinct variations of the error-based ADRC algorithms, with different structures of generalized extended state observers (GESO), are derived for the altitude/attitude trajectory-following task. The convergence of the observation part is proved based on the singular perturbation theory. Through a frequency analysis and a quantitative comparison in a simulated environment, each design is shown to have certain advantages and disadvantages in terms of tracking accuracy and robustness. The digital prototypes of the proposed controllers for quadrotor altitude and attitude control channels are designed and validated through real-time hardware-in-the-loop (HIL) co-simulation, with field-programmable gate array (FPGA) hardware. Findings The effects of unavailable reference time-derivatives can be estimated by the ESO and rejected through the outer control loop. The higher order ESOs demonstrate better performances, but with reductions of stability margins. Time-domain simulation analysis reveals the benefits of the proposed control structure related to classical control approach. Real-time FPGA-based HIL co-simulations validated the performances of the considered digital controllers in typical quadrotor flight scenarios. Practical implications The conducted study forms a set of practical guidelines for end-users for selecting specific ADRC design for quadrotor control depending on the given control objective and work conditions. Furthermore, the paper presents detailed procedure for the design, simulation and validation of the embedded FPGA-based quadrotor control unit. Originality/value In light of the currently available literature on error-based ADRC, a comprehensive approach is applied here, which includes the design of error-based ADRC with different GESOs, its frequency-domain and time-domain analyses using different simulation of UAV flight scenarios, as well as its FPGA-based implementation and testing on the real hardware.


Sign in / Sign up

Export Citation Format

Share Document