Comparative Survey on Big data Security Applications, A Blink on Interactive Security Mechanism in Apache Ozone

Author(s):  
Shiraz Ali Wagan ◽  
Muhammad Junaid ◽  
Nawab Muhammad Faseeh Qureshi ◽  
Dong Ryeol Shin ◽  
Keehyun Choi
2021 ◽  
Vol 2083 (4) ◽  
pp. 042077
Author(s):  
Tongtong Xu ◽  
Lei Shi

Abstract Cloud computing is a new way of computing and storage. Users do not need to master professional skills, but can enjoy convenient network services as long as they pay according to their own needs. When we use cloud services, we need to upload data to cloud servers. As the cloud is an open environment, it is easy for attackers to use cloud computing to conduct excessive computational analysis on big data, which is bound to infringe on others’ privacy. In this process, we inevitably face the challenge of data security. How to ensure data privacy security in the cloud environment has become an urgent problem to be solved. This paper studies the big data security privacy protection based on cloud computing platform. This paper starts from two aspects: implicit security mechanism and display security mechanism (encryption mechanism), so as to protect the security privacy of cloud big data platform in data storage and data computing processing.


Since last decade almost every organization is focusing more on collecting their data (big data) and making analysis of it also applying the concluded valuable outcomes over their organization. The use of smartphones and smart gadgets fasten the gathering of data and enhances the three basic Vs (Volume/ Velocity/ Variety) of big data. This paper focuses on big data security but without fourth V i.e. Value within data, there is no need of securing big data. Perhaps this may be the reason why Hadoop have no security mechanism within its architecture since initially the focus of big data is on the basis of three basic Vs only. With this paper, here authors’ try to provide security to big data by using AES algorithm over HBase database. Authors just giving an idea of big data security methodology and for that the main focus of data security is only on valuable contents of the database.


Symmetry ◽  
2021 ◽  
Vol 13 (9) ◽  
pp. 1718
Author(s):  
Chengzhi Jiang ◽  
Chuanfeng Huang ◽  
Qiwei Huang ◽  
Jian Shi

The multi-source data collected by the power Internet of Things (IoT) provide the data foundation for the power big data analysis. Due to the limited computational capability and large amount of data collection terminals in power IoT, the traditional security mechanism has to be adapted to such an environment. In order to ensure the security of multi-source data in the power monitoring networks, a security system for multi-source big data in power monitoring networks based on the adaptive combined public key algorithm and an identity-based public key authentication protocol is proposed. Based on elliptic curve cryptography and combined public key authentication, the mapping value of user identification information is used to combine the information in a public and private key factor matrix to obtain the corresponding user key pair. The adaptive key fragment and combination method are designed so that the keys are generated while the status of terminals and key generation service is sensed. An identification-based public key authentication protocol is proposed for the power monitoring system where the authentication process is described step by step. Experiments are established to validate the efficiency and effectiveness of the proposed system. The results show that the proposed model demonstrates satisfying performance in key update rate, key generation quantity, data authentication time, and data security. Finally, the proposed model is experimentally implemented in a substation power IoT environment where the application architecture and security mechanism are described. The security evaluation of the experimental implementation shows that the proposed model can resist a series of attacks such as counterfeiting terminal, data eavesdropping, and tampering.


2020 ◽  
Vol 13 (4) ◽  
pp. 790-797
Author(s):  
Gurjit Singh Bhathal ◽  
Amardeep Singh Dhiman

Background: In current scenario of internet, large amounts of data are generated and processed. Hadoop framework is widely used to store and process big data in a highly distributed manner. It is argued that Hadoop Framework is not mature enough to deal with the current cyberattacks on the data. Objective: The main objective of the proposed work is to provide a complete security approach comprising of authorisation and authentication for the user and the Hadoop cluster nodes and to secure the data at rest as well as in transit. Methods: The proposed algorithm uses Kerberos network authentication protocol for authorisation and authentication and to validate the users and the cluster nodes. The Ciphertext-Policy Attribute- Based Encryption (CP-ABE) is used for data at rest and data in transit. User encrypts the file with their own set of attributes and stores on Hadoop Distributed File System. Only intended users can decrypt that file with matching parameters. Results: The proposed algorithm was implemented with data sets of different sizes. The data was processed with and without encryption. The results show little difference in processing time. The performance was affected in range of 0.8% to 3.1%, which includes impact of other factors also, like system configuration, the number of parallel jobs running and virtual environment. Conclusion: The solutions available for handling the big data security problems faced in Hadoop framework are inefficient or incomplete. A complete security framework is proposed for Hadoop Environment. The solution is experimentally proven to have little effect on the performance of the system for datasets of different sizes.


2018 ◽  
Vol 1 (4) ◽  
pp. e13 ◽  
Author(s):  
Rongxin Bao ◽  
Zhikui Chen ◽  
Mohammad S. Obaidat

Sign in / Sign up

Export Citation Format

Share Document