Modeling of surface roughness in turning process by using Artificial Neural Networks

Author(s):  
Samya Dahbi ◽  
Latifa Ezzine ◽  
Haj El Moussami
Author(s):  
Adnan Rachmat Anom Besari ◽  
Ruzaidi Zamri ◽  
Md. Dan Md. Palil ◽  
Anton Satria Prabuwono

Polishing is a highly skilled manufacturing process with a lot of constraints and interaction with environment. In general, the purpose of polishing is to get the uniform surface roughness distributed evenly throughout part’s surface. In order to reduce the polishing time and cope with the shortage of skilled workers, robotic polishing technology has been investigated. This paper studies about vision system to measure surface defects that have been characterized to some level of surface roughness. The surface defects data have learned using artificial neural networks to give a decision in order to move the actuator of arm robot. Force and rotation time have chosen as output parameters of artificial neural networks. Results shows that although there is a considerable change in both parameter values acquired from vision data compared to real data, it is still possible to obtain surface defects characterization using vision sensor to a certain limit of accuracy. The overall results of this research would encourage further developments in this area to achieve robust computer vision based surface measurement systems for industrial robotic, especially in polishing process.Keywords: polishing robot, vision sensor, surface defects, and artificial neural networks


Author(s):  
D. A. Rastorguev ◽  
◽  
A. A. Sevastyanov ◽  

Today, manufacturing technologies are developing within the Industry 4.0 concept, which is the information technologies introduction in manufacturing. One of the most promising digital technologies finding more and more application in manufacturing is a digital twin. A digital twin is an ensemble of mathematical models of technological process, which exchanges information with its physical prototype in real-time. The paper considers an example of the formation of several interconnected predictive modules, which are a part of the structure of the turning process digital twin and designed to predict the quality of processing, the chip formation nature, and the cutting force. The authors carried out a three-factor experiment on the hard turning of 105WCr6 steel hardened to 55 HRC. Used an example of the conducted experiment, the authors described the process of development of the digital twin diagnostic module based on artificial neural networks. When developing a mathematical model for predicting and diagnosing the cutting process, the authors revealed higher accuracy, adaptability, and versatility of artificial neural networks. The developed mathematical model of online diagnostics of the cutting process for determining the surface quality and chip type during processing uses the actual value of the cutting depth determined indirectly by the force load on the drive. In this case, the model uses only the signals of the sensors included in the diagnostic subsystem on the CNC machine. As an informative feature reflecting the force load on the machine’s main motion drive, the authors selected the value of the energy of the current signal of the spindle drive motor. The study identified that the development of a digital twin is possible due to the development of additional modules predicting the accuracy of dimensions, geometric profile, tool wear.


2019 ◽  
Vol 10 (1) ◽  
pp. 75
Author(s):  
Monika Kulisz ◽  
Ireneusz Zagórski ◽  
Jakub Matuszak ◽  
Mariusz Kłonica

The aim of this study was to investigate the effect of milling and brushing cutting data settings on the surface geometry and energy parameters of two Mg alloy substrates: AZ91D and AZ31. In milling, the cutting speed and the trochoidal step were modified (vc = 400–1200 m/min and str = 5–30%) to investigate how they affect selected 2D (Rz, Rku, Rsk, RSm, Ra) and 3D (Sa, Sz, Sku, Ssk) roughness parameters. The brushing treatment was carried out at constant parameters: n = 5000 rev/min, vf = 300 mm/min, ap = 0.5 mm. The surface roughness of specimens was assessed with the Ra, Rz, and RSm parameters. The effects of the two treatments on the workpiece surface were analyzed comparatively. It was found that the roughness properties of the machined surface may be improved by the application of a carbide milling cutter and ceramic brush. The use of different machining data was also shown to impact the surface free energy and its polar component of Mg alloy specimens. Complementary to the results from the experimental part of the study, the investigated machining processes were modelled by means of statistical artificial neural networks (the radial basis function and multi-layered perceptron). The artificial neural networks (ANNs) were shown to perform well as a tool for the prediction of Mg alloy surface roughness parameters and the maximum height of the profile (Rz) after milling and brushing.


Sign in / Sign up

Export Citation Format

Share Document