The Application of Run-Length Features in Remote Sensing Classification Combined with Neural Network and Rough Set

Author(s):  
Zhiguo Cao ◽  
Yang Xiao ◽  
Lamei Zou
2021 ◽  
Vol 13 (13) ◽  
pp. 2445
Author(s):  
Xiaohui Ding ◽  
Yong Li ◽  
Ji Yang ◽  
Huapeng Li ◽  
Lingjia Liu ◽  
...  

The capsule network (Caps) is a novel type of neural network that has great potential for the classification of hyperspectral remote sensing. However, the Caps suffers from the issue of gradient vanishing. To solve this problem, a powered activation regularization based adaptive capsule network (PAR-ACaps) was proposed for hyperspectral remote sensing classification, in which an adaptive routing algorithm without iteration was applied to amplify the gradient, and the powered activation regularization method was used to learn the sparser and more discriminative representation. The classification performance of PAR-ACaps was evaluated using two public hyperspectral remote sensing datasets, i.e., the Pavia University (PU) and Salinas (SA) datasets. The average overall classification accuracy (OA) of PAR-ACaps with shallower architecture was measured and compared with those of the benchmarks, including random forest (RF), support vector machine (SVM), 1-dimensional convolutional neural network (1DCNN), two-dimensional convolutional neural network (CNN), three-dimensional convolutional neural network (3DCNN), Caps, and the original adaptive capsule network (ACaps) with comparable network architectures. The OA of PAR-ACaps for PU and SA datasets was 99.51% and 94.52%, respectively, which was higher than those of benchmarks. Moreover, the classification performance of PAR-ACaps with relatively deeper neural architecture (four and six convolutional layers in the feature extraction stage) was also evaluated to demonstrate the effectiveness of gradient amplification. As shown in the experimental results, the classification performance of PAR-ACaps with relatively deeper neural architecture for PU and SA datasets was also superior to 1DCNN, CNN, 3DCNN, Caps, and ACaps with comparable neural architectures. Additionally, the training time consumed by PAR-ACaps was significantly lower than that of Caps. The proposed PAR-ACaps is, therefore, recommended as an effective alternative for hyperspectral remote sensing classification.


2013 ◽  
Vol 79 (9) ◽  
pp. 787-797 ◽  
Author(s):  
Feng Xie ◽  
Dongmei Chen ◽  
John Meligrana ◽  
Yi Lin ◽  
Wenwei Ren

Author(s):  
Y. Lin ◽  
T. Zhang ◽  
K. Qian ◽  
G. Xie ◽  
J. Cai

Abstract. The automatic classification technology of remote sensing images is the key technology to extract the rich geo-information in remote sensing images and to monitor the dynamic changes of land use and ecological environment. Remote sensing images have the characteristics of large amount of information and many dimensions. Therefore, how to classify and extract the information in remote sensing images has become a crucial issue in the field of remote sensing science. With the development of neural network theory, many scholars have carried out research on the application of neural network models in remote sensing image classification. However, there are still some problems to be solved in artificial neural network methods. In this study, considering the problem of large-scale land classification for medium resolution and multi-spectral remote sensing imagery, an improved machine learning algorithm based on extreme learning machine for remote sensing classification has been developed via regularization theory. The improved algorithm is more suitable for the application of post-classification change monitoring of features in large scale imaging. In this study, our main job is to evaluate the performance of ELM with A-optimal design regularization (here we call it simply as A-optimal RELM). So the accuracy and efficiency of A-optimal RELM algorithm for remote sensing imagery classification, as well as the algorithms of support vector machine (SVM) and original ELM are compared in the experiments. The experimental results show that A-optimal RELM performs the best on all three different images with overall accuracy of 97.27% and 95.03% respectively. Besides, the A-optimal RELM performs better on the details of distinguish similar and confusing terrestrial object pixels.


Sign in / Sign up

Export Citation Format

Share Document