design regularization
Recently Published Documents


TOTAL DOCUMENTS

15
(FIVE YEARS 1)

H-INDEX

6
(FIVE YEARS 0)

Author(s):  
Y. Lin ◽  
T. Zhang ◽  
K. Qian ◽  
G. Xie ◽  
J. Cai

Abstract. The automatic classification technology of remote sensing images is the key technology to extract the rich geo-information in remote sensing images and to monitor the dynamic changes of land use and ecological environment. Remote sensing images have the characteristics of large amount of information and many dimensions. Therefore, how to classify and extract the information in remote sensing images has become a crucial issue in the field of remote sensing science. With the development of neural network theory, many scholars have carried out research on the application of neural network models in remote sensing image classification. However, there are still some problems to be solved in artificial neural network methods. In this study, considering the problem of large-scale land classification for medium resolution and multi-spectral remote sensing imagery, an improved machine learning algorithm based on extreme learning machine for remote sensing classification has been developed via regularization theory. The improved algorithm is more suitable for the application of post-classification change monitoring of features in large scale imaging. In this study, our main job is to evaluate the performance of ELM with A-optimal design regularization (here we call it simply as A-optimal RELM). So the accuracy and efficiency of A-optimal RELM algorithm for remote sensing imagery classification, as well as the algorithms of support vector machine (SVM) and original ELM are compared in the experiments. The experimental results show that A-optimal RELM performs the best on all three different images with overall accuracy of 97.27% and 95.03% respectively. Besides, the A-optimal RELM performs better on the details of distinguish similar and confusing terrestrial object pixels.


Author(s):  
Israel Yañez-Vargas ◽  
Joel Quintanilla-Domínguez ◽  
Gabriel Aguilera-Gonzalez

This paper presents a novel multi-layer perceptron (MLP) based image fusion technique, which fuses two synthetic aperture radar (SAR) images, obtained from the same spatial reflectivity map, acquired with a conventional low-cost fractional synthetic aperture radar (Fr-SAR) system, enhanced via two different methodologies. The first image is enhanced using the traditional descriptive experiment design regularization (DEDR) framework through the projection onto convex solution sets (POCS) method; the second image is enhanced with the DEDR framework by incorporating the robust adaptive spatial filtering (RASF) solution operator. This work describes a MLP based technique applied to the pixel level multi-focus fusion problem characterized by the use of image windows with the idea of reducing noise and determining which pixel is clearer between the two images. Experimental results show that the proposed novel method outperforms the discrete wavelet transform based most competing approach.


2018 ◽  
Vol 10 (11) ◽  
pp. 1822 ◽  
Author(s):  
Gustavo Martín del Campo ◽  
Yuriy Shkvarko ◽  
Andreas Reigber ◽  
Matteo Nannini

Among the objectives of the upcoming space missions Tandem-L and BIOMASS, is the 3-D representation of the global forest structure via synthetic aperture radar (SAR) tomography (TomoSAR). To achieve such a goal, modern approaches suggest solving the TomoSAR inverse problems by exploiting polarimetric diversity and structural model properties of the different scattering mechanisms. This way, the related tomographic imaging problems are treated in descriptive regularization settings, applying modern non-parametric spatial spectral analysis (SSA) techniques. Nonetheless, the achievable resolution of the commonly performed SSA-based estimators highly depends on the span of the tomographic aperture; furthermore, irregular sampling and non-uniform constellations sacrifice the attainable resolution, introduce artifacts and increase ambiguity. Overcoming these drawbacks, in this paper, we address a new multi-stage iterative technique for feature-enhanced TomoSAR imaging that aggregates the virtual adaptive beamforming (VAB)-based SSA approach, with the wavelet domain thresholding (WDT) regularization framework, which we refer to as WAVAB (WDT-refined VAB). First, high resolution imagery is recovered applying the descriptive experiment design regularization (DEDR)-inspired reconstructive processing. Next, the additional resolution enhancement with suppression of artifacts is performed, via the WDT-based sparsity promoting refinement in the wavelet transform (WT) domain. Additionally, incorporation of the sum of Kronecker products (SKP) decomposition technique at the pre-processing stage, improves ground and canopy separation and allows for the utilization of different better adapted TomoSAR imaging techniques, on the ground and canopy structural components, separately. The feature enhancing capabilities of the novel robust WAVAB TomoSAR imaging technique are corroborated through the processing of airborne data of the German Aerospace Center (DLR), providing detailed volume height profiles reconstruction, as an alternative to the competing non-parametric SSA-based methods.


2014 ◽  
Author(s):  
Jason P. Cain ◽  
Norma P. Rodriguez ◽  
Jason Sweis ◽  
Frank E. Gennari ◽  
Ya-Chieh Lai

2013 ◽  
Vol 93 (12) ◽  
pp. 3553-3566 ◽  
Author(s):  
Yuriy V. Shkvarko ◽  
José Tuxpan ◽  
Stewart R. Santos

Sign in / Sign up

Export Citation Format

Share Document