Influence of Diffuse Reflection on Field Uniformity in Electromagnetic Interference Testing Chamber

Author(s):  
DongJun Wang ◽  
Qinhao Sun ◽  
Lewu Deng ◽  
Lei Zhang ◽  
Furong Zhang ◽  
...  
2020 ◽  
Vol 64 (1-4) ◽  
pp. 19-29
Author(s):  
Shuting Ren ◽  
Yong Li ◽  
Bei Yan ◽  
Jinhua Hu ◽  
Ilham Mukriz Zainal Abidin ◽  
...  

Structures of nonmagnetic materials are broadly used in engineering fields such as aerospace, energy, etc. Due to corrosive and hostile environments, they are vulnerable to the Subsurface Pitting Corrosion (SPC) leading to structural failure. Therefore, it is imperative to conduct periodical inspection and comprehensive evaluation of SPC using reliable nondestructive evaluation techniques. Extended from the conventional Pulsed eddy current method (PEC), Gradient-field Pulsed Eddy Current technique (GPEC) has been proposed and found to be advantageous over PEC in terms of enhanced inspection sensitivity and accuracy in evaluation and imaging of subsurface defects in nonmagnetic conductors. In this paper two GPEC probes for uniform field excitation are intensively analyzed and compared. Their capabilities in SPC evaluation and imaging are explored through simulations and experiments. The optimal position for deployment of the magnetic field sensor is determined by scrutinizing the field uniformity and inspection sensitivity to SPC based on finite element simulations. After the optimal probe structure is chosen, quantitative evaluation and imaging of SPC are investigated. Signal/image processing algorithms for SPC evaluation are proposed. Through simulations and experiments, it has been found that the T-shaped probe together with the proposed processing algorithms is advantageous and preferable for profile recognition and depth evaluation of SPC.


2020 ◽  
pp. 38-44
Author(s):  
A. V. Polyakov ◽  
M. A. Ksenofontov

Optical technologies for measuring electrical quantities attract great attention due to their unique properties and significant advantages over other technologies used in high-voltage electric power industry: the use of optical fibers ensures high stability of measuring equipment to electromagnetic interference and galvanic isolation of high-voltage sensors; external electromagnetic fields do not influence the data transmitted from optical sensors via fiber-optic communication lines; problems associated with ground loops are eliminated, there are no side electromagnetic radiation and crosstalk between the channels. The structure and operation principle of a quasi-distributed fiber-optic high-voltage monitoring system is presented. The sensitive element is a combination of a piezo-ceramic tube with an optical fiber wound around it. The device uses reverse transverse piezoelectric effect. The measurement principle is based on recording the change in the recirculation frequency under the applied voltage influence. When the measuring sections are arranged in ascending order of the measured effective voltages relative to the receiving-transmitting unit, a relative resolution of 0,3–0,45 % is achieved for the PZT-5H and 0,8–1,2 % for the PZT-4 in the voltage range 20–150 kV.


2012 ◽  
Vol E95.B (7) ◽  
pp. 2386-2392
Author(s):  
Jung-Hoon KIM ◽  
Tae-Heon JANG ◽  
Sung-Kuk LIM ◽  
Songjun LEE ◽  
Sung-Il YANG

2011 ◽  
Vol E94-B (1) ◽  
pp. 334-337 ◽  
Author(s):  
Jung-Hoon KIM ◽  
Hye-Kwang KIM ◽  
Eugene RHEE ◽  
Sung-Il YANG

2016 ◽  
Vol E99.C (6) ◽  
pp. 659-662 ◽  
Author(s):  
Junichiro KADOMOTO ◽  
So HASEGAWA ◽  
Yusuke KIUCHI ◽  
Atsutake KOSUGE ◽  
Tadahiro KURODA

Sign in / Sign up

Export Citation Format

Share Document