HuMoD - A versatile and open database for the investigation, modeling and simulation of human motion dynamics on actuation level

Author(s):  
Janis Wojtusch ◽  
Oskar von Stryk
Author(s):  
Joo H. Kim ◽  
Karim Abdel Malek ◽  
Jingzhou Yang ◽  
R. Timothy Marler
Keyword(s):  

Author(s):  
Abby George ◽  
David Moline ◽  
John Wagner

Abstract A mobile energy harvester device based on the inertial automatic winding mechanism found in watches is explored. Through normal human motion during walking and running, the arm travels a spatial path that can potentially be used for energy harvesting. The conceptual harvester consists of a rotary pendulum coupled to a small generator through a step-up gear train. The generator’s electrical output may be stored and utilized as a power source for portable electronic devices that require a smaller amount of power for operation. In this paper, the equations of motion governing the human arm motion dynamics and harvester pendulum excitation are fully derived. Two cases of human walking and running are considered to analyze the system response. A series of representative simulation studies have been conducted for representative arm motion to determine the potential energy. The energy available for harvesting was greater in the case of the human subject running at 2.06 mJ, while when walking it offered an output of 0.42 mJ for a 5 second time period. The two numerical results serve as a basis for building a mobile energy harvester for future research into a renewable device that can be used by humans to augment battery life for portable electronic devices.


Author(s):  
Chuanqi Zang ◽  
Mingtao Pei ◽  
Yu Kong

Human motion prediction is a task where we anticipate future motion based on past observation. Previous approaches rely on the access to large datasets of skeleton data, and thus are difficult to be generalized to novel motion dynamics with limited training data. In our work, we propose a novel approach named Motion Prediction Network (MoPredNet) for few-short human motion prediction. MoPredNet can be adapted to predicting new motion dynamics using limited data, and it elegantly captures long-term dependency in motion dynamics. Specifically, MoPredNet dynamically selects the most informative poses in the streaming motion data as masked poses. In addition, MoPredNet improves its encoding capability of motion dynamics by adaptively learning spatio-temporal structure from the observed poses and masked poses. We also propose to adapt MoPredNet to novel motion dynamics based on accumulated motion experiences and limited novel motion dynamics data. Experimental results show that our method achieves better performance over state-of-the-art methods in motion prediction.


2000 ◽  
Vol 59 (2) ◽  
pp. 85-88 ◽  
Author(s):  
Rudolf Groner ◽  
Marina T. Groner ◽  
Kazuo Koga

Sign in / Sign up

Export Citation Format

Share Document