Cost Matrix Algorithm for Cloud VM Migration

Author(s):  
A Simran ◽  
J. Geetha
Author(s):  
A. I. Belousov

The main objective of this paper is to prove a theorem according to which a method of successive elimination of unknowns in the solution of systems of linear equations in the semi-rings with iteration gives the really smallest solution of the system. The proof is based on the graph interpretation of the system and establishes a relationship between the method of sequential elimination of unknowns and the method for calculating a cost matrix of a labeled oriented graph using the method of sequential calculation of cost matrices following the paths of increasing ranks. Along with that, and in terms of preparing for the proof of the main theorem, we consider the following important properties of the closed semi-rings and semi-rings with iteration.We prove the properties of an infinite sum (a supremum of the sequence in natural ordering of an idempotent semi-ring). In particular, the proof of the continuity of the addition operation is much simpler than in the known issues, which is the basis for the well-known algorithm for solving a linear equation in a semi-ring with iteration.Next, we prove a theorem on the closeness of semi-rings with iteration with respect to solutions of the systems of linear equations. We also give a detailed proof of the theorem of the cost matrix of an oriented graph labeled above a semi-ring as an iteration of the matrix of arc labels.The concept of an automaton over a semi-ring is introduced, which, unlike the usual labeled oriented graph, has a distinguished "final" vertex with a zero out-degree.All of the foregoing provides a basis for the proof of the main theorem, in which the concept of an automaton over a semi-ring plays the main role.The article's results are scientifically and methodologically valuable. The proposed proof of the main theorem allows us to relate two alternative methods for calculating the cost matrix of a labeled oriented graph, and the proposed proofs of already known statements can be useful in presenting the elements of the theory of semi-rings that plays an important role in mathematical studies of students majoring in software technologies and theoretical computer science.


Author(s):  
Dinghui Wu ◽  
Juan Zhang ◽  
Bo Wang ◽  
Tinglong Pan

Traditional static threshold–based state analysis methods can be applied to specific signal-to-noise ratio situations but may present poor performance in the presence of large sizes and complexity of power system. In this article, an improved maximum eigenvalue sample covariance matrix algorithm is proposed, where a Marchenko–Pastur law–based dynamic threshold is introduced by taking all the eigenvalues exceeding the supremum into account for different signal-to-noise ratio situations, to improve the calculation efficiency and widen the application fields of existing methods. The comparison analysis based on IEEE 39-Bus system shows that the proposed algorithm outperforms the existing solutions in terms of calculation speed, anti-interference ability, and universality to different signal-to-noise ratio situations.


IET Networks ◽  
2019 ◽  
Vol 8 (2) ◽  
pp. 114-125
Author(s):  
Douglas Comer ◽  
Rajas H. Karandikar

Author(s):  
JOAQUÍN ABELLÁN ◽  
ANDRÉS R. MASEGOSA

In this paper, we present the following contributions: (i) an adaptation of a precise classifier to work on imprecise classification for cost-sensitive problems; (ii) a new measure to check the performance of an imprecise classifier. The imprecise classifier is based on a method to build simple decision trees that we have modified for imprecise classification. It uses the Imprecise Dirichlet Model (IDM) to represent information, with the upper entropy as a tool for splitting. Our new measure to compare imprecise classifiers takes errors into account. Thus far, this has not been considered by other measures for classifiers of this type. This measure penalizes wrong predictions using a cost matrix of the errors, given by an expert; and it quantifies the success of an imprecise classifier based on the cardinal number of the set of non-dominated states returned. To compare the performance of our imprecise classification method and the new measure, we have used a second imprecise classifier known as Naive Credal Classifier (NCC) which is a variation of the classic Naive Bayes using the IDM; and a known measure for imprecise classification.


Sign in / Sign up

Export Citation Format

Share Document