Multidimensional speaker information recognition based on proposed baseline system

Author(s):  
Shan Li ◽  
Longting Xu ◽  
Zhen Yang
2021 ◽  
pp. 1-10
Author(s):  
Zhiqiang Yu ◽  
Yuxin Huang ◽  
Junjun Guo

It has been shown that the performance of neural machine translation (NMT) drops starkly in low-resource conditions. Thai-Lao is a typical low-resource language pair of tiny parallel corpus, leading to suboptimal NMT performance on it. However, Thai and Lao have considerable similarities in linguistic morphology and have bilingual lexicon which is relatively easy to obtain. To use this feature, we first build a bilingual similarity lexicon composed of pairs of similar words. Then we propose a novel NMT architecture to leverage the similarity between Thai and Lao. Specifically, besides the prevailing sentence encoder, we introduce an extra similarity lexicon encoder into the conventional encoder-decoder architecture, by which the semantic information carried by the similarity lexicon can be represented. We further provide a simple mechanism in the decoder to balance the information representations delivered from the input sentence and the similarity lexicon. Our approach can fully exploit linguistic similarity carried by the similarity lexicon to improve translation quality. Experimental results demonstrate that our approach achieves significant improvements over the state-of-the-art Transformer baseline system and previous similar works.


Author(s):  
Paul A. Berman ◽  
Dennis A. Horazak ◽  
Paul W. Pillsbury

A combustion turbine combined cycle that uses coal-derived dirty fuels can be economical if the fuel is processed at the plant site and cost of electricity (COE) is used as the criterion for configuring the power system and selecting its components. In a DOE/METC-sponsored study, 12 combinations of power components and conditioning components were evaluated for each of two fuels: a gas made from coal and a coal/water slurry. One baseline system was selected from each group of 12 systems, based on its potential to achieve a low COE. Each baseline system was then parametrically evaluated to show the effects of specific components on the COE of the power plant. In one of these studies, on-site coal conversion was shown as the key to reducing the COE and the operating cost of the plant, thus improving the chances of the plant being used for baseload operation.


Author(s):  
Takahisa Kobayashi ◽  
Donald L. Simon

In this paper, a baseline system which utilizes dual-channel sensor measurements for aircraft engine on-line diagnostics is developed. This system is composed of a linear on-board engine model (LOBEM) and fault detection and isolation (FDI) logic. The LOBEM provides the analytical third channel against which the dual-channel measurements are compared. When the discrepancy among the triplex channels exceeds a tolerance level, the FDI logic determines the cause of the discrepancy. Through this approach, the baseline system achieves the following objectives: 1) anomaly detection, 2) component fault detection, and 3) sensor fault detection and isolation. The performance of the baseline system is evaluated in a simulation environment using faults in sensors and components.


Sign in / Sign up

Export Citation Format

Share Document