Design of Equal Potential Integral Detection Device for High Voltage Electric Energy Metering Equipment

Author(s):  
Zhou Feng ◽  
Feng Ling ◽  
Jiang Jinyang ◽  
Zhang Jiaming ◽  
Du Jie ◽  
...  
2014 ◽  
Vol 687-691 ◽  
pp. 3110-3115
Author(s):  
Gu Li ◽  
Zi Ming Fu ◽  
Jie Feng Yan ◽  
Bing Wen Li ◽  
Zhi Rong Cen

This paper analyzes and studies the definition of the voltage transformer secondary load, examines the practical purposes of the measured values of the voltage transformer secondary load, and presents a variety of testing methods to analyze and compare the differences. This paper gives the test methods of the voltage transformer secondary load when the connection of the voltage transformer is the Y / Y in a three-phase three-wire power supply system, filling the blank of this type of test method in the industry. When other units within the industry carry out such work, the conclusions of this paper are available for reference, and the conclusions of this paper can be referred when drafting relevant regulations in the future.


Author(s):  
Mengshuang Liu ◽  
Xudong Shi ◽  
Chen Yang

In order to study the accurate measurement of electric energy in complex industrial field, a method of harmonic electric energy measurement based on wavelet packet decomposition and reconstruction algorithm, as well as the calculation formula of harmonic power and the principle of harmonic electric energy measurement are proposed. Using db42 wavelet function to carry out harmonic energy metering simulation analysis, the results show that: The fundamental frequency of the simulation signal is 50 Hz, two-layer wavelet packet transform is adopted, the simulation input signals within 40 fundamental wave cycles are taken, and the sampling frequency fs is 800 Hz. Conclusion: The three-phase harmonic energy metering device based on virtual instrument technology has realized the measurement of each harmonic active power and reactive power, and the accuracy reaches 0.2 s.


2014 ◽  
Vol 672-674 ◽  
pp. 1205-1209
Author(s):  
Hui Jun Yu ◽  
Zhi Wei Zhou ◽  
Cai Biao Chen ◽  
Ju Hui Gu

The paper focuses on the locomotive intelligent watt hour meter based on STM32. By designing Intelligent watt hour meter main function, hardware architecture, and software processes to achieve energy data display, storage, and duplex communication. The hardware structure consists of main control module, electric energy metering module, communication module and other components, electric energy metering module is responsible for data acquisition, the main control module is responsible for data processing, communications module is responsible for two-way communication. Using MATLAB software to simulate the newly developed Intelligent watt hour meter,the simulation results show that, the intelligent watt hour meter has the advantages of high precision, low power consumption, fast performance, strong anti-interference ability, low manufacturing cost etc.


2014 ◽  
Vol 668-669 ◽  
pp. 673-676
Author(s):  
Zhuo Wang ◽  
Hai Bao

The traditional electric power metering theory is a kind of no-error metering theory in sinusoidal steady-state circuit. However, the applying condition is too rigor, and the engineering environment is hard to fulfil, the application premise should be extended to dynamic. Ideal linear elements are adopted to build a first-order dynamic circuit. And the analytic expressions of the capacitor cumulative electric energy in the charging process are derived theoretically. It points out that the cumulative electric energy of capacitor in dynamic circuit is a nonzero value. This fully demonstrates that the energy metering principle brings error when it is used in dynamic environment.


Sign in / Sign up

Export Citation Format

Share Document